June 2024

UL Certified Relays Catalog

ABOUT ELKO EP NORTH AMERICA

ELKO EP North America is a new addition to ELKO EP Holding. With 15 years of OEM

 expertise and private label success in the region, we are embarking on a new venture proudly bringing the globally recognized ELKO brand directly to businesses and customers all across North America. With our headquarters nestled in the vibrant city of Miami, FL, we also operate offices in Chicago, IL, and have a strategically located warehouse in Louisville, KY, ensuring prompt service and product availability.While our North American operations continue to thrive, our global reach is expansive. As OEM partners, we collaborate with renowned entities worldwide, underscoring our global expertise and commitment to excellence. Our products are recognized for quality, holding UL, CE and EAC certifications.

Internationally, ELKO EP stands out as the largest DIN Rail Relay Manufacturer in the European Union. Our robust team consists of 400 dedicated employees, with 45 specialists engaged in Research \& Development, pushing the boundaries of innovation. Our global presence is further emphasized by our export network extending to 80 countries, supported by 15 branches worldwide. With a turnover of 40 million USD, our commitment to quality, innovation, and customer satisfaction remains paramount.

Jan Pacovsky
 Managing Member, CEO

Cell: +1 (608)746-1332
Email: pacovsky@elkoepna.com
www.elkoepna.com

5 Reasons to Become a Partner

Work Directily with the Manufacturer

Forge a direct connection with the visionaries behind the products. Our EU-based R\&D and manufacturing are enhanced by a supportive US-based head office \& warehouse.

US-Stocked Products

Out commitment to local stock ensures zero drop-shipping and guarantees a swift delivery window of just 1-10 days.

Quality Endorsed by the North American Market

Forge a direct connection with the visionaries behind the products. Our EU-based R\&D and manufacturing are enhanced by a supportive US-based head office \& warehouse.

A Unique Product Portfolio

Expand your offerings with our diverse product range, opening doors to attract and serve new customers.

An Unbeatable Price Advantage

Savor the competitive edge with our direct-to-customer model, presenting partners with a lucrative margin.

Attained awards \& Memberships

Czech Business
Superbrands

Technology Fast 50

Vodafone
Company of the Year 2012

Electronics
Representatives Association member

Global exporter in 2016

ABOUT ELKO EP HOLDING

ELKO EP has been your partner in the field for 30 years, developing and manufacturing the highest quality electronic devices for electroinstallation and smart systems for residential and building automation.

Abstract

ELKO EP employs more than 400 people across 15 foreign branches and exports its products to more than seventy countries. Company of the Year, Visionary of the Year, Superbrands and Global Exporter of the Year are just some of the awards we have received throughout the years as we consistently strive to move forward in the field of innovation and development.

Millions of relays, thousands of smart homes, hundreds of buildings and many satisfied customers - This is ELKO EP; a traditional company based in the center of Europe, where own development, production, logistics, and service are at the forefront of our focus.

Facts and stats

R\&D
Continuosly Innovative

MANUFACTURER
Fully Automated Complete Process

SUPPORT
24/7/365
24/7/365

R\&D	MANUFACTURER	SUPPORT
Continuosly	Fully Automated Complete Process	$24 / 7 / 365$
Innovative		

World leader
In DIN Rail Relays Production

Product lines ELKO EP

Timers/Relays

www.elkoep.com/relays

Time relays, auxiliary relays, installation contactors, memory and bistable relays, staircase switches, time switches, twilight and light switches, dimmers and light intensity controllers, power supplies and bell transformers, controlling and signalling devices.

Monitoring/Protection relays

www.elkoep.com/monitoring
Voltage relays 1-phase and 3-phase (undervoltage, overvoltage, phase failure, phase asymmetry and phase sequence), current relays, liquid level relays, thermostats, voltage indicator, power factor and frequency monitoring relays.

Multifunction current monitoring relay in 1P - PRI-34

It is a new line of PRI-34 current monitoring relays in a multifunction design. All types now measure TRUE RMS values (thus with minimal fault regardless of the shape of measured current). Of course, it is possible to connect external current transformers (possible extension of the measured range up to 1600A). There is a choice of eight functions incl. the memory ones.
Individual types are divided according to the nominal monitored current:

- PRI-34/1 A - monitored range AC 0.05-1 A
- PRI-34/2 A - monitored range AC 0.1-2 A
- PRI-34/5 A - monitored range AC 0.25-5 A
- PRI-34/8 A - monitored range AC 0.4-8 A
- PRI-34/16 A - monitored range AC 0.8-16 A

Multifunction voltage monitoring relay in 1P - HRN-3x, PMR1

The original HRN-3x types on a DIN rail will be replaced by new ones that are multifunction and bring several improvements. Now you have options with one or two output contacts. The design into a socket is the PMR1 model. As well as the previous novelty, also this one measures TRUE RMS values. This is related with monitoring of DC voltage in higher ranges. The original DC range was slightly modified for optional monitoring of 24 V batteries. Multifunctionality enables the selection of up to nine functions incl. memory ones. Also an external input for memory reset was added.
Individual types are divided according to the monitored range:

On DIN rail:

- HRN-31, HRN-31/2, HRN-32/2 - monitored range AC/DC 48 to 276V
- HRN-36, HRN 36/2 - monitored range DC 6 to 30V
- HRN-39, HRN 39/2 - monitored range AC/DC 24 to 150V

Into a socket:

- PMR1-31, PMR1-31/2 - monitored range AC/DC 48 to 276V
- PMR1-36, PMR1-36/2 - monitored range DC 6 to 30V
- PMR1-39, PMR1-39/2 - monitored range AC/DC 24 to 150V

Timers/Relays

TIME RELAYS - MULTIFUNCTION DESIGN
CRM-161|Multifunction time relay-economy version (1-MODULE) 11
CRM-91H, CRM-92H, CRM-93H | Multifunction time relays - BESTSELLER (1-MODULE 12
CRM-111H, CRM-113H | Multifunction time relays with inhibit delay (1-MODULE)
CRM $-121 \mathrm{H} \mid$ Multifunction time relay with galvanically separated control input (1-MODULE) 16
CRM-131H|Multifunction time relay with three control inputs (1-MODULE)
CRM-82TO |True off delay time relay (1-MODULE) 20
TIME RELAYS - SINGLEFUNCTION, SPECIAL
CRM-2T | STAR (λ)/DELTA (Δ) time relay (1-MODULE) 21
CRM-181J, CRM-182J, CRM-183J | Singlefunction time relays (1-MODULE) 22
CRM-2H | Asymmetric flasher (1-MODULE) 24
TIME RELAYS - PLUG-IN
PTRM-216TP, PTRM-216KP | Multifunction time relays with inhibit delay (11-PIN)PTRM-216T, PTRM-216K | Multifunction time relays with potential-free control input(11-PIN)
PTRA-216T, PTRA-216K | Multifunction time relays with three control inputs (11-PIN)
AUXILIARY RELAYS
VS116U,VS308U, |Auxiliary relays (BOX/1-MODULE) 32
INSTALLATION CONTACTORS25
VS120, VS220, VS325, VS340, VS363, VS425, VS440, VS463 | Installation contactors
VS120, VS220, VS325, VS340, VS363, VS425, VS440, VS463 | Installation contactors (1/2/3-MODULE) (1/2/3-MODULE)
POWER SUPPLIES AND BELL TRANSFORMERS 35 35
PS1M, PS2M, PS3M, PS4M, PS6M | Switching power supplies DC - unregulated (1/2/3/4-MODULE)VOLTAGE 1-PHASE
HRN-31, HRN-32/2, HRN-39| Multifunction voltage monitoring relays in 1P-AC/DC (2-MODULE)
HRN-36|Multifunction voltage monitoring relay in 1P - DC (2-MODULE 45
PMR1-31, PMR1-39| Multifunction voltage monitoring relays in 1P - AC/DC (8-PIN)
PMR1-36 | Multifunction voltage monitoring relay in 1P - DC (8-PIN) 4747VOLTAGE 3-PHASES
HRN-56 | Voltage monitoring relays in 3P with adjustable level Umin (1/3-MODULE) 49
3-MODULE/8-PIN) HRN3-70, PMR3-70| Voltage monitoring relays in 3P with selectable range 50
(1-MODULE) HRN3-80, HRN3-81 | Voltage monitoring relays in 3P - selectable range (HRN3-80), fixed range (HRN3-81) 52
CURRENT
PRI-32 | Current monitoring relay of Imax level passing through a hole in 1P - AC (1-MODULE) 55
PRI-34| Multifunction current monitoring relays in 1P-AC (1-MODULE) 56
PRI-51 | Current monitoring relays of Imax level in 1P - AC (1-MODULE) 58
DIGITAL TIME SWITCHES
SHT-13, SHT-13/2 | Multifunction digital time switch with Wi-Fi connection (2-MODULE)
NON-UL PRODUCTS
CRM-91HE, CRM-2HE, CRM-9S, HRN-100, HRH-5, MR-41, MR-42, TER-7, TER-9, SJR-2 (1/2/3-MODULE)60
USE CASES - TOP 10 NEW RELAYS
HRN-31, HRN-32/2, HRN-36, HRN-39, HRN3-81, SHT-13 / SHT-13/2, PRI-34, HRN3-70, PMR1-31, PMR1-36/2 (1/2-MODULE)62
USE CASES - TOP 10 NEW RELAYS BY US SALES
CRM-161, CRM-183J ZR, CRM-2H, CRM-82TO, CRM-91H, CRM-93H, HRN-56, PRI-51, VS116U, VS308U (1-MODULE)64
TECHNICAL DETAILS
Loadability of products 69
Product packaging 71
Dimensions 72
Examples of use 75

Multifunction

Singlefunction, special

PLUG-IN

Design																														
1-MODULE	-	-		- -	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	\bullet	\bullet	-						
3-MODULE																														
PLUG-IN																									\bullet	-	-	-	-	-
Under the switch																														
Control elements																														
Rotary switches/potentiometers	-	-		- -	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	\bullet	-	-	\bullet	\bullet	\bullet		\bullet		-	
Large rotary knob																										-		-		-
Buttons																														
External potentiometer																							\bullet							
Time range																														
$50 \mathrm{~ms}-0.5 \mathrm{~s}$						-	-	-	-																\bullet	-	-	-	-	-
$0.1-1 \mathrm{~s}$	-	-		- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1-10s	-	-		- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-30 s												-	-	-	-	-	-	-	-	-	-	-	-							
0.1-1 min	-	-		- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1-10 min	-	-		- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-30 min												-	-	-	-	-	-	-	-	-	-	-	-							
$0.1-1 \mathrm{~h}$	-	-		- -	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1-10 h	\bullet	-		- -	-	-	-	-	-		\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-
3-30 h												-	-	-	-	-	-	-	-	-	-	-	\bullet							
$0.1-1 \mathrm{~d}$		-	-	- -	- -	-	-	-	-		-													-	-	-	-	-	-	-
1-10 d		\bullet		- -	-																									
10-100 h						-	-	\bullet	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet
3-30 d						-	-	-	-		-													-	-	-	-	-	-	-
10-100 d											-													\bullet						
0.5-10 min																														
0.01s - 100 h																														
0.1s-999 h																														
Supply voltage																														
AC 230 V		\square		\square							-													-						
AC/DC 12-240 V		\bullet	-	- -	- -	-	-	\bullet	-	-	-	-	-	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-	-
AC $24-240 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}$	\bullet																													
AC/DC $24-240 \mathrm{~V}$																														
Output contact																														
1x changeover 8 A	\bullet																													
1 x changeover 16 A		-				\bullet		\bullet	-	-		-	-	-	-									-						
2 x changeover 8 A											-																			
2 x changeover 16 A				\bullet												\bullet	-	-	\bullet						-	-	\bullet	-	-	\bullet
1 x switching 16 A																														
1 x changeover $16 \mathrm{~A}, 2 \mathrm{x}$ changeover 8 A					\bullet		\bullet													-	-	-	-							
Solid state (triac)																														

- only for CRM-91H, CRM-93H
- with the option of extending it to 30 min

Functions

Staircase switch																											
Programmable staircase switch (with/without signaling)																											
Delayed start	-	-	-	-	-	-	-	X								-				-					-	-	X
Delayed start with delay suppression					-	-	-									-				-					-	-	
Delayed start after switching on the control contact	-																										
Delayed start after opening of the control contact																											
Delayed start after closing and delayed return after opening the control contact		-	-	-	-	-	-	X																	-	-	X
Delayed start (repeatable) until the power is turned off																											
Delayed start star / triangle																											
2 x delayed start																											
Delayed return	-	-	-	-	-	-	-	X									-				-				-	-	x
Delayed return with delay suppression					-	-	-						-				-				-				-	-	
Delay off on downward edge																											
TRUE OFF DELAY																											
TRUE SINGLE SHOT																											
TRUE INTERVAL ON																											
TRUE INTERVAL ON/OFF																											
Delayed return after closing the control contact		-	-	-	-	-	-	x																	-	-	X
Delayed return after opening the control contact		-	-	-																							
Delayed return after opening the control contact with immediate closing of the output	-	-	-	-	-	-	\bullet	X							-				-				-		-	-	X
Delayed return after closing the control contact renewable					-	-	\bullet	X																	-	-	X
Delayed return after closing and opening of the control contact					-	-	-	x																	-	-	X
Delayed return when closing the control contact with delayed output																											
Emergency light tester																											
Flasher 1:1 starting with an impulse	-	-	-	-	-	-	-	X						-				-				-			-	-	X
Flasher 1:1 starting with a delay-suppressed impulse														-				\bullet				\bullet					
Flasher 1:1 starting with an impulse while the control button is pressed																											
Flasher 1:1 starting with a gap		-	-	-	\bullet	-	\bullet	X																	-	-	X
Flasher 1:1 starting with a gap while the control button is pressed																											
Asymmetric flasher starting with an impulse																											
Impulse relay		-	-	-	-	-	-																		-	-	
Impulse relay with delay	-				-		-	x																			X
Pulse generator		-	-	-	-	-	-	X																	-	-	X
Pulse generator with delay suppression					-	-																			-	-	

x functions controlled by inputs START, INHIBIT, RESET

- functions controlled by inputs START, STOP

Technical parameters	CRM-161	
Power supply		
Supply terminals:	A1-A2	
Voltage range:	AC 24-240 V \| DC 24 V ($\mathrm{AC} 50-60 \mathrm{~Hz}$)	
Power input (max.):	2 VA 1.5 W	
Supply voltage tolerance:	-15\%; +10 \%	
Supply indication:	green LED	
Time circuit		
Number of functions:	6	
Time ranges:	$0.1 \mathrm{~s}-10 \mathrm{hrs}$	
Time setting:	rotary switch and potentiometer	
Time deviation:	5% - mechanical setting	
Repeat accuracy:	0.2 \% - set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20{ }^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:	1x changeover/SPDT (AgNi)	
Current rating:	8 A/AC1; 1/2 HP\|240 Vac, 1/3 HP	120 Vac; PD. B300
Breaking capacity:	2000 VA/AC1, 192 W/DC	
Switching voltage:	$250 \mathrm{~V} \mathrm{AC/24} \mathrm{~V} \mathrm{DC}$	
Max. power dissipation:	0.6 W	
Output indication:	multifunction red LED	
Mechanical life:	10.000.000 ops.	
Electrical life (AC1):	100.000 ops.	
Control		
Control. terminals:	A1-S	
Load between S-A2:	Yes	
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited	
Reset time:	max. 150 ms	
Other information		
Operating temperature:	$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectric strength:	$4 \mathrm{kV} \mathrm{AC} \mathrm{(supply} \mathrm{-} \mathrm{output)}$	
Operating position:	any	
Mounting:	DIN rail EN 60715	
Protection degree:	IP40 from front panel/IP20 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or $2 x 1.5 /$ with sleeve max. 1×2.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$	
Weight:	62 g (2.2 oz.)	
Standards:	EN 61812-1	

Indication of operating states

Examples of signaling

- Multifunction economy version of time relay for universal use in automation, control and regulation or in house installations.
- Universal supply voltage: AC $24-240 \mathrm{~V}$ (AC $50 / 60 \mathrm{~Hz}$) and DC 24 V .
- Comfortable and well-arranged function and time-range setting by rotary switches.
- Time scale $0.1 \mathrm{~s}-10$ hrs divided into 6 ranges:
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{~h} / 1 \mathrm{~h}-10 \mathrm{hrs}$).
- Output contact: 1x changeover/SPDT 8 A.
- Multifunction red LED flashes or shines depending on the operating status.

Description

Control input (S (

Functions

Connection

Possibility to connect load onto controlling input It is possible to connect the load (e.g.: contactor) between terminals S-A2, without any interruption of correct relay function.

Possibility to connect load onto controlling input
It is possible to connect the load (e.g.: contactor) between terminals S-A2, without any interruption of correct relay function.

Indication of operating states
Examples of signaling

Function a

Functione

Function

Function (page 13)

Function

ON DELAY

When the input voltage U is applied, timing delay t begins. Relay contacts R change state after time delay is complete. Contacts R return to their shelf state when input voltage U is removed. Trigger switch is not used in this function

FLASHER - OFF first

When input voltage U is applied, time delay t begins. When time delay t is complete, relay contacts R change state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

FLASHER-ON first

When input voltage U is applied, relay contacts R change state immediately and time delay t begins. When time delay t is complete, contacts return to their shelf state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

INTERVAL ON

When input voltage U is applied, relay contacts R change state immediately and timing cycle begins. When time delay is complete, contacts return to shelf state. When input voltage U is removed, contacts will also return to their shelfstate. Trigger switch is not used in this function.

©

SINGLE SHOT
Upon application of input voltage U , the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the preset time t begins. During time-out, the trigger signal S is ignored. The relay resets by applying the trigger switch S when the relay is not energized.

SINGLE SHOT falling edge

Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the preset time t begins. At the end of the preset time t, the relay contacts R return to their normal condition unless the trigger switch S is opened and closed prior to time out t (before preset time elapses). Continuous cycling of the trigger switch S at a rate faster than the preset time will cause the relay contacts R to remain closed. If input voltage U is removed, relay contacts R return to their shelf state

ON/OFF DELAY

Input voltage U must be applied continuously. When trigger switch S is closed, time delay t begins. When time delay t is complete, relay contacts R change state and remain transferred until trigger switch S is opened. If input voltage U is removed, relay contacts R return to their shelf state.

OFF DELAY

Input voltage U must be applied continuously. When trigger switch S is closed, relay contacts R change state. When trigger switch S is opened, delay t begins. When delay t is complete, contacts R return to their shelf state. If trigger switch S is closed before time delay t is complete, then time is reset. When trigger switch S is opened, the delay begins again, and relay contacts R remain in their energized state. If input voltage U is removed, relay contacts R return to their shelf state.

MEMORY LATCH

Input voltage U must be applied continuously. Output changes state with every trigger switch S closure. If input voltage U is removed, relay contacts R return to their shelf state.

(j)

PULSE GENERATOR

Upon application of input voltage U, a single output pulse of 0.5 seconds is delivered to relay after time delay t . Power must be removed and reapplied to repeat pulse. Trigger switch is not used in this function.

CRM-111H/UN: 8595188175548 CRM-113H/UN: 8595188180634

Technical parameters CRM-111H CRM-113H

Description

Possibility to connect load onto controlling input

It is possible to connect the load (e.g.: contactor) between terminals S-A2, without any interruption of correct relay function.

[^0]
Indication of operating states

Mode selection

FUNC. Settings function mode

The desired function a-j is set with the FUNC rotary switch.

OFF. Output contact open mode

ON. Output contact closed mode
\qquad
k. Function: MEMORY LATCH with delay
(Only for CRM-111H)

When the supply voltage is applied, the relay is open. If the control contact is closed, the relay closes and the time delay T starts. It does not matter the length of the control pulse. When the timing is complete, the relay opens. If the control contact is closed during timing, the relay opens immediately. Each time the control contact closes during relay timing, it changes status.

中 2,3 INST. Second and third output contact instantaneous
(Only for CRM-113H)
Un
內2 \qquad
The second output contact switches according to the supply voltage. The first output contact switches according to the function (a-j) set by the trimmer FUNC.

Function

Function (page 17).

EAN code
CRM-121H/UNI: 8595188175555

Technical parameters

CRM-121H

Power supply		
Supply terminals:	A1-A2	
Voltage range:	AC/DC $12-240 \mathrm{~V}$ (AC $50-60 \mathrm{~Hz}$)	
Power input (max.):	$2 \mathrm{VA} / 1.5 \mathrm{~W}$	
Supply voltage tolerance:	-15\%; +10 \%	
Supply indication:	green LED	
Time circuit		
Number of functions:	11	
Time ranges:	$50 \mathrm{~ms}-30$ days	
Time setting:	rotary switch and potentiometer	
Time deviation:*	5% - mechanical setting	
Repeat accuracy:	0.2 \% - set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts	1x changeover/SPDT (AgNi)	
Current rating:	16 A/AC1; 1 HP\|240 Vac, 1/2 HP	120 Vac; PD. B300
Breaking capacity:	4000 VA/AC1, 384 W/DC	
Switching voltage:	250 V AC/24 V DC	
Max. power dissipation:	1.2 W	
Output indication:	multifunction red LED	
Mechanical life:	10.000.000 ops.	
Electrical life (AC1):	100.000 ops.	
Control		
Control terminals:	S1-S2	
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited	
Reset time:	max. 150 ms	
Other information		
Operating temperature:	$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectric strength:	4 kV AC (supply - output) 4 kV AC (supply - control input)	
Operating position:	any	
Mounting:	DIN rail EN 60715	
Protection degree:	IP40 from front panel/IP10 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or $1 \times 4 /$ with sleeve max. 1×2.5 or 2×1.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5{ }^{\prime \prime} \times 0.7{ }^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$	
Weight:	72 g (2.5 oz.)	
Standards:	EN 61812-1	

[^1]- Multifunction time relay for universal use in automation, control and regulation or in house installations.
- Galvanically separated control input (Power Trigger).
- All functions initiated by the supply voltage, except for the flasher function, can use the control input to inhibit the delay (pause).
- Mode selection - according to the set function, permanently closed, permanently open, function of MEMORY LATCH with delay.
- Time scale $50 \mathrm{~ms}-30$ days divided into 10 ranges.
- Multifunction red LED flashes or shines depending on the operating status.

Mode selection

FUNC. Settings function mode
The desired function $\mathrm{a}-\mathrm{j}$ is set with the FUNC rotary switch.

OFF. Output contact open mode
\square
ON. Output contact closed mode

k. Function: MEMORY LATCH with delay

When the supply voltage is applied, the relay is open. If the control contact is closed, the relay closes and the time delay T starts. It does not matter the length of the control pulse. When the timing is complete, the relay opens. If the control contact is closed during timing, the relay opens immediately. Each time the control contact closes during relay timing, it changes status.

Function

a. ON DELAY

When the supply voltage is applied, the time delay T begins. When the timing is complete, the relay closes and this condition continues until the supply voltage is disconnected.

ON DELAY with Inhibit

If the control contact is closed and the supply voltage is connected, the relay is opened and timing does not start until the control contact opens.
When the timing is complete, the relay closes. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.
b. INTERVAL ON

After supply voltage relay closes and starts the delay time T. After the end of the timing relay opens and this state lasts until the supply voltage is disconnected.

INTERVAL ON with Inhibit

If the control contact is closed and the supply voltage is connected, the relay will close and the timing will start only after the control contact has been opened.
When the timing is complete, the relay opens. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.

c. FLASHER - ON first

After supply voltage relay closes and starts the delay time T. After the end of the timing relay opens and again runs delay time T . When the timing is complete, the relay closes again and the sequence is repeated until the supply voltage is disconnected. If the control contact is closed during timing, this does not affect the operation of the cycler.

FLASHER - OFF first

If the control contact is closed during timing; this does not aff ect the operation of the cycler. If the control contact is closed and the supply voltage is connected, the cycler starts with a pause (relay open).

d. MEMORY LATCH

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes. The status does not change when the control contact is opened. When the control contact is closed again, the relay opens. Each time the control contact is closed, the relay changes status.
e. OFF DELAY

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes. When the control contact opens, the time delay T begins. If the control contact is closed during timing, the time is reset and the relay remains closed. When the control contact opens, the time delay T starts again and opens when the relay closes.

f. SINGLE SHOT

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. Closing the control contact during timing is ignored.

g. WATCHDOG

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. Closing the control contact during timing triggers a new time delay T - the relay closing time is thus increased.
h. PULSE GENERATOR 0.5 s

After the supply voltage has been applied, the time delay T begins. When the timing is complete, the relay closes for a fixed time (0.5 s).

PULSE GENERATOR 0.5 s with Inhibit

After supply voltage starts the time delay T. By closing timing of the control contact during timing is suspended. When the control contact opens, the time interval is completed and the relay closes for a fixed time (0.5 s).
i. INTERVAL ON/OFF

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. When the control contact is opened, the relay closes and the time delay T begins. If the control contact is open during timing, the relay remains closed for 2 T . When the timing is complete, the relay opens. Any other change of control contact status during timing is ignored.

j. ON/OFF DELAY

When the supply voltage is applied, the relay is open. If control contact is closed, time delay T starts. When the control contact is opened, a new time delay T begins. If the control contact is open during timing, the relay closes at the end of the timing and opens the relay after the new time delay. Any other change of control contact status during timing is ignored.

EAN code
CRM-131H/UNI: 8595188175562

Technical parameters

CRM-131H

Power supply	
Supply terminals:	A1 - A2
Voltage range:	AC/DC 12-240 V (AC $50-60 \mathrm{~Hz})$
Power input (max.):	$2 \mathrm{VA} / 1.5 \mathrm{~W}$
Supply voltage tolerance:	$-15 \% ;+10 \%$
Supply indication:	green LED
Time circuit	

Number of functions:	11
Time ranges:	$50 \mathrm{~ms}-30$ days
Time setting:	rotary switch and potentiometer
Time deviation:*	5% - mechanical setting
Repeat accuracy:	0.2 \% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts	1x changeover/SPDT (AgNi)
Current rating:	$16 \mathrm{~A} / \mathrm{AC} 1 ; 1 \mathrm{HP}\|240 \mathrm{Vac}, 1 / 2 \mathrm{HP}\| 120 \mathrm{Vac} ;$ PD. B300
Breaking capacity:	4000 VA/AC1, 384 W/DC
Switching voltage:	250 V AC/24 V DC
Max. power dissipation:	1.2 W
Output indication:	multifunction red LED
Mechanical life:	10.000 .000 ops.
Electrical life (AC1):	100.000 ops.

Control	
Load between I, S, R-A2:	Yes
Control terminals:	I, S, R - A1

Impulse length:
$\min .25 \mathrm{~ms} /$ max. unlimited
Reset time:
max. 150 ms

Other information

Operating temperature:
Storage temperature:
Dielectric strength:
Operating position:
Mounting:
Protection degree:
Overvoltage category:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:

Dimensions:
Weight:
Standards:

[^2]- Multifunction time relay for universal use in automation, control and regulation or in house installations.
- Three control inputs - START, INHIBIT, RESET.
- Mode selection - according to the set function, permanently closed, permanently open, function of MEMORY LATCH with delay.
- Multifunction red LED flashes or shines depending on the operating status.

Mode selection

FUNC. Settings function mode
The desired function $a-j$ is set with the FUNC rotary switch.
OFF. Output contact open mode

ON.Output contact closed mode

k. MEMORY LATCH with delay

When the supply voltage is applied, the relay is open. If the START control contact is closed, the relay closes and the time delay T starts. It does not matter the length of the control pulse. When the timing is complete, the relay opens. If the START control contact is closed during timing, the relay opens immediately. Each time the control contact closes during relay timing, it changes status. Closing the INHIBIT control contact pauses the timing, after opening the INHIBIT control contact the timing continues from the moment of interruption. Closing the RESET control contact immediately ends the timing and the relay opens, just like as when the supply voltage is disconnected.

Function

Control input function description:

- Contact START starts the time function
- INHIBIT contact pauses timing (pause)
- The RESET contact simulates switching the supply voltage on and off

Same for all features:

- If the control contact START is closed and the supply voltage is connected, the time function is activated when the supply voltage is connected.
- Closing the control contact INHIBIT pauses the timing, after opening the control contact INHIBIT timing continues from the moment of interruption.
- If the INHIBIT control contact is closed, the START control contact is activated and the timing is paused.
- Closing the control contact RESET immediately terminates the timing and the relay opens, just as when the supply voltage is disconnected.
- If the control contact RESET is closed and then the control contact START is closed, the time function is activated when the control contact RESET is opened as well as when the supply voltage is connected.

a. ON DELAY with Control Signal

When the supply voltage is applied, the relay is open. If the control contact START is closed, the time delay T starts.
The closing of the START control contact during timing is ignored.

b. INTERVAL ON with Control Signal

When the supply voltage is applied, the relay is open. When the control contact START is closed, the relay closes and the time delay T begins.
If the START control contact is open during timing, the time interval is immediately terminated and the relay opens.

c. FLASHER - ON first with Control Signal

When the supply voltage is applied, the relay is open. When the START control contact is closed, the relay energizes and starts the delay timeT. After the end of the timing relay opens and again runs delay time T. Upon completion timing again switches, and the sequence is repeated until the supply voltage is disconnected.

d. FLASHER - OFF first with Control Signal

When the supply voltage is applied, the relay is open. When the START control contact is closed, starts the time delay T. After the end of the timing relay closes and again runs delay time T. After the end of the timing relay opens and the sequence is repeated until the supply voltage is disconnected.

e. OFF DELAY

When the supply voltage is applied, the relay is open. If the control contact START is closed, the relay closes. After tripping Contact Start starts the delay time T. After the end of the timing relay is switched off.
f. SINGLE SHOT

When the supply voltage is applied, the relay is open. When the START control contact is closed, the relay energizes and starts the delay time T. After the end of the timing relay is switched off. The closing of the START control contact during timing is ignored.

g. WATCHDOG

When the supply voltage is applied, the relay is open. When the START control contact is closed, the relay energizes and starts the delay time T. After the end of the timing relay is switched off. Closing control contact START during timing triggers a new time delay T the relay closing time is thus increased.

h. PULSE GENERATOR 0.5 s with Control Signal

When the supply voltage is applied, the relay is open. When the START control contact is closed, starts the time delay T. After the end of the timing relay switches for the fixed time (0.5 sec).

i. INTERVAL ON/OFF

When the supply voltage is applied, the relay is open. When the START control contact is closed, the relay energizes and starts the delay time T. After the end of the timing relay is switched off. By opening the control contact start relay again closes and starts the delay time T. After the end of the timing relay is switched off.

If the START control contact is open during timing, a restart occurs - the relay remains closed and a new time delay T begins. When the timing is complete, the relay opens.

j. ON/OFF DELAY

When the supply voltage is applied, the relay is open. When the START control contact is closed, starts the time delay T. After the end of the timing relay switches. Opening the control contact START starts a new time delay T. When the timing is complete, the relay opens.

If the START control contact is open during timing, a restart occurs - the relay closes and a new time delay T begins. When the timing is complete, the relay opens.

EAN code
CRM-82TO/UNI: 8595188137614

Technical parameters	CRM-82TO
Number of functions:	a-TRUE OFF DELAY / e-ON DELAY
Supply terminals:	A1-A2
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ($\mathrm{AC} \mathrm{50-60} \mathrm{Hz)}$
Burden (max.):	$3 \mathrm{VA} / 1.7 \mathrm{~W}$
Max. dissipated power (Un + terminals):	2.5 W
Supply voltage tolerance:	-15\%; +10 \%
Supply indication:	green LED
Time ranges:	0.1 s - 10 min
Time setting:	potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	0.2 \% - set value stability
Temperature coefficient:	$0.1 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.1 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	$2 \mathrm{changeover/DPDT} \mathrm{(AgNi/Silver} \mathrm{Alloy)}$
Current rating:	8 A/AC1; 1/2 HP\|240 Vac; PD. B300
Breaking capacity:	2000 VA/AC1, 192 W/DC
Inrush current:	$10 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{~V} \mathrm{AC/24} \mathrm{~V} \mathrm{DC}$
Output indication:	red LED
Mechanical life:	2.000.000 ops.
Electrical life (AC1):	200.000 ops.
Other information	
Operating temperature:	$-20 . .55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30 . .70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$
Dielectric strength:	4 kV (supply-output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP40 from front panel / IP10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or 1×4, with sleeve max. 2×1.5 or 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	73 g (2.6 oz.)
Standards:	EN 61812-1

Symbol

- „TRUE OFF DELAY" relay starts timing after power supply failure. Example of use case: back-up source for DELAY OFF in case power supply failure. (e.g. emergency lighting, emergency respirator, or protection of el. controlled doors - in case of fire).
- 2 time functions adjustable by rotary switch: a - delayed return after disconnecting of supply
e-delayed start.
- Time range (adjustable by rotary switch and fine setting by potentiometer): $0.1 \mathrm{~s}-10 \mathrm{~min}$.
- Interruptions in the power supply must take time steps (tens to hundreds of milliseconds).
- Output status indicated by red LED (only in case of supply voltage connection).

Description

Supply terminals
(A1-A2)

Output contact (16-26)
Supply indication
Rough time setting
Output contact (18-28)

Function
a - TRUE OFF DELAY e-ON DELAY

Connection

EAN code
CRM-2T/UN: 8595188112437

Technical parameters

CRM-2T

Power supply		
Supply terminals:	A1-A2	
Voltage range: \quad z	AC/DC $12-240 \mathrm{~V}$ (AC $50-60 \mathrm{~Hz}$)	
Power input (max.):	$2 \mathrm{VA} / 1.5 \mathrm{~W}$	
Voltage range:	AC $230 \mathrm{~V}(50-60 \mathrm{~Hz})$	
Power input (max.): \sim	AC $3 \mathrm{VA} / 1.4 \mathrm{~W}$	
Supply voltage tolerance:	-15 \%; +10 \%	
Supply indication:	green LED	
Function		
Time scale:	$\mathrm{t} 1: 0.1 \mathrm{~s}-100$ days, $\mathrm{t} 2: 0.1 \mathrm{~s}-1 \mathrm{~s}$	
Time setting:	rotaty switch and potentiometer	
Time deviation:	5% - mechanical setting	
Repeat accuracy:	0.2 \% - set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:	2 x changeover/SPDT (AgNi)	
Current rating:	16 A/AC1; 1 HP\|240 Vac, 1/2 HP	120 Vac; PD. B300
Breaking capacity:	4000 VA/AC1, 384 W/DC	
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$	
Switching voltage:	250 V AC/24 V DC	
Max. power dissipation:	1.2 W	
Output indication:	multifunction red LED	
Mechanical life:	10.000 .000 ops .	
Electrical life (AC1):	100.000 ops.	
Reset time:	max. 150 ms	
Other information		
Operating temperature:	$-20 . .55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30 . .70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectric strength:		
supply - output 1	4 kV AC	
supply - output 2	4 kV AC	
output 1 - output 2	4 kV AC	
Operating position:	any	

Mounting:
Protection degree:
Overvoltage category:
Pollution degree:
Terminal wire capacity $\left(\mathrm{mm}^{2}\right)$:

Dimensions:
Weight:
Standards:
DIN rail EN 60715
IP40 from front panel/IP20 terminals
III.

2
max.1x 2.5, 2x1.5,
with sleeve max. 1×2.5 (AWG 12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
UNI-78 g (2.8 oz.), 230-73 g (2.6 oz.)
EN 61812-1

Symbol

- It serves for delay ON of motors star/delta.
- Time t1 (star):
- time range setting by rotary switch
- fine time setting by potentiometer.
- Time t2 (delay) between λ / Δ
- fine time setting by potentiometer.
- Multifunction red LED flashes or shines depending on the operating status.

Description

Supply indication
Time range setting t 1
Fine time setting t 1

Function

STAR/DELTA timer

Connection

Start up of motor $(\lambda-\triangle)$

start of a motor

- Single function time relays are suitable for applications where there is a clear function requirement in advance and are suitable for universal use in automation, control and regulation or in house installations.
- Choice of four types: ZR, ZN, BL, OD.
- All functions initiated by the supply voltage can use the control input to inhibit the ongoing delay (pause).
- Multifunction red LED flashes or shines depending on the operating status.

Description

Connection

CRM-181J CRM-182J CRM-183J

CRM-183J:
The potential difference between the supply terminals (A1-A2), output contact 2 (25-26-28) and output contact 3 (35-36-38) must be a maximum of 250 V AC rms/DC.

Possibility to connect load onto controlling input

It is possible to connect the load (e.g.: contactor) between terminals S-A2, without any interruption of correct relay function.

Indication of operating states

Function

ZR: ON DELAY

When the supply voltage is applied, the time delay Tbegins. When the timing is complete, the relay closes and this condition continues until the supply voltage is disconnected.

ON DELAY with Inhibit

If the control contact is closed and the supply voltage is connected, the relay is opened and timing does not start until the control contact opens. When the timing is complete, the relay closes. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.

If the control contact is closed and the supply voltage is connected, the relay will close and
the timing will start only after the control contact has been opened. When the timing is complete, the relay opens.

FLASHER - ON first with Inhibit

If the control contact is closed during an active timer setting, the timing is interrupted and continues only after the control contact opens again.

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes. When the control contact opens, the time delay T begins. If the control contact is closed during timing, the time is reset and the relay remains closed. When the control contact opens, the time delay T starts again and opens when the relay closes.

INTERVAL ON with Inhibit

If the control contact is closed and the supply voltage is connected, the relay will close and the timing will start only after the control contact has been opened.
When the timing is complete, the relay opens. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.

Note:
$Z R, Z N$ and BL functions are initiated by connecting the supply voltage to the product, i.e. In the event of a failure and recovery of the supply voltage, the relay automatically performs 1 cycle.

CRM-2H

Power supply	
Supply terminals:	A1-A2
Voltage range: $\quad \overline{\mathbf{z}}$	AC/DC 12-240 V (AC $50-60 \mathrm{~Hz}$)
Power input (max.):	$2 \mathrm{VA} / 1.5 \mathrm{~W}$
Voltage range: $\quad \stackrel{\sim}{\sim}$	AC $230 \mathrm{~V}(50 / 60 \mathrm{~Hz}$)
Power input (max.):	AC $3 \mathrm{VA} / 1.4 \mathrm{~W}$
Supply voltage tolerance:	-15\%; +10 \%
Supply indication:	green LED
Function	
Time scale:	$0.1 \mathrm{~s}-100$ days
Time setting:	rotary switch and potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	0.2 \% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	1x changeover/SPDT (AgNi)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1;} 1 \mathrm{HP}\|240 \mathrm{Vac}, 1 / 2 \mathrm{HP}\| 120 \mathrm{Vac} ;$ PD. B300
Breaking capacity:	4000 VA/AC1, 384 W/DC
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC
Max. power dissipation:	1.2 W
Output indication:	multifunction red LED
Mechanical life:	10.000 .000 ops.
Electrical life (AC1):	100.000 ops.
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-20 . .55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30 . .70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$
Dielectric strength:	4 kV AC (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP40 from front panel/IP20 terminals
Overvoltage category:	III.
Pollution degree:	2
Terminal wire capacity (mm^{2}):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ (3.5" $\left.\times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weight	UNI-61 g (2.2 oz.), 230-58 g (2 oz.)
Standards:	EN 61812-1

Symbol

- Flasher with independent adjustable switch ON and switch OFF.
- Used for regular room ventilation, cyclic dehumidification, light control, circulating pumps, illuminated advertising, etc.
- 2 time functions:

1) Asymmetric FLASHER - ON first
2) Asymmetric FLASHER - OFF first

- Function choice is done by an external jumper of terminals S-A1.
- Time scale $0.1 \mathrm{~s}-100$ days divided into 10 time ranges.
- Time range setting via rotary switch.
- Fine time setting by potentiometer.
- Multifunction red LED flashes or shines depending on the operating status.

Description

Supply indication
Fine time setting - IMPULSE
Time range setting - PAUSE
Output contact
(15-16-18)

Connection

Asymmetric FLASHER - ON first
Asymmetric FLASHER - OFF first (jumper S-A1)

Function

Asymmetric FLASHER - ON first

Asymmetric FLASHER - OFF first

- Multifunction time relay for universal use in automation, control and regulation or in house installations.
- Possibility to select the control element for fine time setting: PTRM-216KP - knob, for easy handling without the need for tools PTRM-216TP - rotary switch, for the possibility of using a sealable cover.
- All functions initiated by the supply voltage, except for the flasher function, can use the control input to inhibit the delay (pause).
- Mode selection - according to the set function, permanently closed, permanently open, and switching of the second output contact according to the supply voltage.
- Multifunction red LED flashes or shines depending on the operating status.

Power supply

Power pins:
Voltage range:
Power input (max.):
Supply voltage tolerance:
Supply indication:
PTRM-216TP PTRM-216KP

2, 10
EAN code
PTRM-216KP/UN: 8595188179386
PTRM-216KP/UNI: 8595188178617

Time circuit

Number of functions:
Time ranges:
Time setting:
Time deviation:*
Repeat accuracy:
Temperature coefficient:

Output			
Number of contacts:	2 x changeover/SPDT (AgNi)		
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$; 1 HP\|240 Vac, 1/2 HP	120 Vac; PD. B300	
Breaking capacity:	4000 VA/AC1, 384 W/DC		
Switching voltage:	$250 \mathrm{~V} \mathrm{AC/24} \mathrm{~V} \mathrm{DC}$		
Max. power dissipation:	2.4 W		
Output indication:	multifunction red LED		
Mechanical life:	10.000 .000 ops.		
Electrical life (AC1):	100.000 ops.		
Control			
Control pins:	5 (2) -6		
Impulse length:	min. $25 \mathrm{~ms} /$ max. unlimited		
Reset time:	max. 150 ms		
Other information			
Operating temperature:	$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$		
Storage temperature:	$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$		
Dielectric strength:			
supply - output $1(1,3,4)$	2.5 kV AC		
supply - output $2(8,9,11)$	2.5 kV AC		
output 1 - output 2	2.5 kV AC		
Operating position:	any		
Mounting:	11 pin octal socket		
Protection degree:	IP40 from front panel		
Overvoltage category:			
for supply voltage $12-150 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	III.		
for supply voltage 150-240 V AC/DC	11.		
Pollution degree:	2		
Dimensions:	$48 \times 48 \times 79 \mathrm{~mm}$ ($\left.1.7^{\prime \prime} \times 1.7^{\prime \prime} \times 3.1{ }^{\prime \prime}\right)$	$48 \times 48 \times 89 \mathrm{~mm}\left(1.7^{\prime \prime} \times 1.7^{\prime \prime} \times 3.5^{\prime \prime}\right)$	
Weight:	111 g (3.9 oz.)	108 g (3.81 oz .)	
Standards:	EN 618	2-1	

* for adjustable delay $<100 \mathrm{~ms}$, a time deviation of $\pm 10 \mathrm{~ms}$ applies

Function

Functions (page 26).

Description

OFF. Output contact open mode
Un
ゅ

ON. Output contact closed mode

ゆ 2 INST. Second output contact instantaneous

The second output contact switches according to the supply voltage. The first output contact switches according to the function ($\mathrm{a}-\mathrm{j}$) set by the trimmer FUNC.

Function

a. ON DELAY

When the supply voltage is applied, the time delay T begins. When the timing is complete, the relay closes and this condition continues until the supply voltage is disconnected.

ON DELAY with Inhibit

If the control contact is closed and the supply voltage is connected, the relay is opened and timing does not start until the control contact opens.
When the timing is complete, the relay closes. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.
b. INTERVAL ON

After supply voltage relay closes and starts the delay time T. After the end of the timing relay opens and this state lasts until the supply voltage is disconnected.

INTERVAL ON with Inhibit

If the control contact is closed and the supply voltage is connected, the relay will close and the timing will start only after the control contact has been opened.
When the timing is complete, the relay opens. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.

c. FLASHER - ON first

After supply voltage relay closes and starts the delay time T. After the end of the timing relay opens and again runs delay time T. When the timing is complete, the relay closes again and the sequence is repeated until the supply voltage is disconnected. If the control contact is closed during timing, this does not affect the operation of the cycler.

FLASHER - OFF first

If the control contact is closed during timing; this does not aff ect the operation of the cycler. If the control contact is closed and the supply voltage is connected, the cycler starts with a pause (relay open).

d. MEMORY LATCH

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes. The status does not change when the control contact is opened. When the control contact is closed again, the relay opens. Each time the control contact is closed, the relay changes status.

e. OFF DELAY

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes. When the control contact opens, the time delay T begins. If the control contact is closed during timing, the time is reset and the relay remains closed. When the control contact opens, the time delay T starts again and opens when the relay closes.

f. SINGLE SHOT

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. Closing the control contact during timing is ignored.

g. WATCHDOG

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. Closing the control contact during timing triggers a new time delay T - the relay closing time is thus increased.
h. PULSE GENERATOR 0.5 s

After the supply voltage has been applied, the time delay T begins. When the timing is complete, the relay closes for a fixed time (0.5 s).

PULSE GENERATOR 0.5 s with Inhibit

After supply voltage starts the time delay T . By closing timing of the control contact during timing is suspended. When the control contact opens, the time interval is completed and the relay closes for a fixed time (0.5 s).
i. INTERVAL ON/OFF

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. When the control contact is opened, the relay closes and the time delay T begins. If the control contact is open during timing, the relay remains closed for $2 T$. When the timing is complete, the relay opens. Any other change of control contact status during timing is ignored.

j. ON/OFF DELAY

When the supply voltage is applied, the relay is open. If control contact is closed, time delay T starts. When the control contact is opened, a new time delay T begins. If the control contact is open during timing, the relay closes at the end of the timing and opens the relay after the new time delay. Any other change of control contact status during timing is ignored.

EAN code
PTRM－216T／UNI：8595188175586
PTRM－216K／UNI： 8595188175579

Technical parameters	PTRM－216T
Power supply	
Power pins：	2,10
Voltage range：	AC／DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$
Power input（max．）：	$2.5 \mathrm{VA} / 1.5 \mathrm{~W}$
Supply voltage tolerance：	$\pm 10 \%$
Supply indication：	green LED
Time circuit	

Time circuit

Time ranges：
Time setting：
Time deviation＊：
Repeat accuracy：
Temperature coefficient：
10
$50 \mathrm{~ms}-30$ days
otary switch and potentiometer
5%－mechanical setting
0.2%－set value stability

Output

Number of contacts
Current rating：
Breaking capacity：
Switching voltage：
Max．power dissipation：
Output indication：
Mechanical life：
Electrical life（AC1）：
$0.01 \% /{ }^{\circ} \mathrm{C}$ ，at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$ ，at $\left.=68{ }^{\circ} \mathrm{F}\right)$

Control

Control pins：	5－6	
Impulse length：	min． $25 \mathrm{~ms} / \mathrm{max}$ ．unlimited	
Reset time：	max． 150 ms	
Other information		
Operating temperature：	$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$	
Storage temperature：	$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectric strength：		
supply－output 1 （1，3，4）	2.5 kV AC	
supply－output $2(8,9,11)$	2.5 kV AC	
output 1 －output 2	2.5 kV AC	
Operating position：	any	
Mounting：	11 pin octal socket	
Protection degree：	IP40 from front panel	
Overvoltage category：		
for supply voltage 12－150V AC／DC	III．	
for supply voltage 150－240V AC／DC	II．	
Pollution degree：	2	
Dimensions：	$48 \times 48 \times 79 \mathrm{~mm}$（1．7＂x1．7＂x3．1＂）	$48 \times 48 \times 89 \mathrm{~mm}$（1．7＂x1．7＂x3．5＂）
Weight：	111 g （3．9 oz．）	$108 \mathrm{~g}(3.81 \mathrm{oz}$.
Standards：	EN 61812－1	

[^3]－Multifunction time relay for universal use in automation，control and regulation or in house installations．
－Potential－free control input（Control Switch Trigger）．
－Possibility to select the control element for fine time setting：
－PTRM－216K－knob，for easy handling without the need for tools．
－PTRM－216T－rotary switch，for the possibility of using a sealable cover．
－All functions initiated by the supply voltage，except for the flasher function，can use the control input to inhibit the delay（pause）．
－Mode selection－according to the set function，permanently closed， permanently open，and switching of the second output contact according to the supply voltage．
－Multifunction red LED flashes or shines depending on the operating status．

Description

Connection
Indication of operating states

Mode selection

FUNC．Settings function mode
The desired function a－j is set with the FUNC rotary switch．

OFF．Output contact open mode
\square

ON．Output contact closed mode
Un
市

ض 2 INST．Second output contact instantaneous

The second output contact switches according to the supply voltage． The first output contact switches according to the function（a－j）set by the trimmer FUNC．

Function

a. ON DELAY

When the supply voltage is applied, the time delay Tbegins. When the timing is complete, the relay closes and this condition continues until the supply voltage is disconnected.

ON DELAY with Inhibit

If the control contact is closed and the supply voltage is connected, the relay is opened and timing does not start until the control contact opens.
When the timing is complete, the relay closes. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.
b. INTERVAL ON

After supply voltage relay closes and starts the delay time T. After the end of the timing relay opens and this state lasts until the supply voltage is disconnected.

INTERVAL ON with Inhibit

If the control contact is closed and the supply voltage is connected, the relay will close and the timing will start only after the control contact has been opened.
When the timing is complete, the relay opens. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.

c. FLASHER - ON first

After supply voltage relay closes and starts the delay time T. After the end of the timing relay opens and again runs delay time T. When the timing is complete, the relay closes again and the sequence is repeated until the supply voltage is disconnected. If the control contact is closed during timing, this does not affect the operation of the cycler.

FLASHER - OFF first

If the control contact is closed during timing; this does not aff ect the operation of the cycler. If the control contact is closed and the supply voltage is connected, the cycler starts with a pause (relay open).
d. MEMORY LATCH

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes. The status does not change when the control contact is opened. When the control contact is closed again, the relay opens. Each time the control contact is closed, the relay changes status.

e. OFF DELAY

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes. When the control contact opens, the time delay T begins. If the control contact is closed during timing, the time is reset and the relay remains closed. When the control contact opens, the time delay T starts again and opens when the relay closes.

f. SINGLE SHOT

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. Closing the control contact during timing is ignored.

g. WATCHDOG

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. Closing the control contact during timing triggers a new time delay T - the relay closing time is thus increased.

h. PULSE GENERATOR 0.5 s

After the supply voltage has been applied, the time delay T begins. When the timing is complete, the relay closes for a fixed time (0.5 s).

PULSE GENERATOR 0.5 s with Inhibit

After supply voltage starts the time delay T. By closing timing of the control contact during timing is suspended. When the control contact opens, the time interval is completed and the relay closes for a fixed time (0.5 s).

i. INTERVAL ON/OFF

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes and the time delay T begins. When the control contact is opened, the relay closes and the time delay T begins. If the control contact is open during timing, the relay remains closed for 2 T . When the timing is complete, the relay opens. Any other change of control contact status during timing is ignored.

j. ON/OFF DELAY

When the supply voltage is applied, the relay is open. If control contact is closed, time delay T starts. When the control contact is opened, a new time delay T begins. If the control contact is open during timing, the relay closes at the end of the timing and opens the relay after the new time delay. Any other change of control contact status during timing is ignored.

EAN code
PTRA-216T/UNI: 8595188175609
PTRA-216K/UNI: 8595188175593

Technical parameters	PTRA-216T
Power supply	2,10
Power pins:	AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$
Voltage range:	$2.5 \mathrm{VA} / 1.5 \mathrm{~W}$
Power input (max.):	$\pm 10 \%$
Supply voltage tolerance:	green LED
Supply indication:	
Time circuit	

Time circuit

Number of functions:
Time ranges:
Time setting:
Time deviation*:
Repeat accuracy:
Temperature coefficient:
10
$50 \mathrm{~ms}-30$ days
rotary switch and potentiometer

Output

Number of contacts:	2 x changeover/SPDT (AgNi)	
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$; 1 HP\|240 Vac, 1/2 HP	120 Vac; PD. B300
Breaking capacity:	4000 VA/AC1, 384 W/DC	
Switching voltage:	$250 \mathrm{~V} \mathrm{AC/24} \mathrm{~V} \mathrm{DC}$	
Max. power dissipation:	2.4 W	
Output indication:	multifunction red LED	
Mechanical life:	10.000.000 ops.	
Electrical life (AC1):	100.000 ops.	
Control		
Control pins:	5-2, 6-2, 7-2	
Impulse length:	$\mathrm{min} .25 \mathrm{~ms} / \mathrm{max}$. unlimited	
Reset time:	max. 150 ms	
Other information		

Operating temperature:	$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectric strength:		
supply - output $1(1,3,4)$	2.5 kV AC	
supply - output $2(8,9,11)$	2.5 kV AC	
output 1 - output 2	2.5 kV AC	
Operating position:	any	
Mounting:	11 pin octal socket	
Protection degree:	IP40 from front panel	
Overvoltage category:		
for supply voltage 12-150V AC/DC	III.	
for supply voltage 150-240V AC/DC	II.	
Pollution degree:	2	
Dimensions:	$48 \times 48 \times 79 \mathrm{~mm}$ (1.7"x1.7"x3.1")	$48 \times 48 \times 89 \mathrm{~mm}$ (1.7"x1.7"x3.5")
Weight:	111 g (3.9 oz.)	108 g (3.81 oz.)
Standards:	EN 61812-1	

* for adjustable delay $<100 \mathrm{~ms}$, a time deviation of $\pm 10 \mathrm{~ms}$ applies
- Multifunction time relay for universal use in automation, control and regulation or in house installations.
- Three control inputs - START, INHIBIT, RESET.
- Possibility to select the control element for fine time setting: PTRA-216K - knob, for easy handling without the need for tools PTRA-216T - rotary switch, for the possibility of using a sealable cover.
- Mode selection - according to the set function, permanently closed, permanently open, and switching of the second output contact according to the supply voltage.
- Multifunction red LED flashes or shines depending on the operating status.

Description

Mode selection

FUNC. Settings function mode
The desired function a-j is set with the FUNC rotary switch.

OFF. Output contact open mode

ON. Output contact closed mode

ض 2 INST. Second output contact instantaneous

The second output contact switches according to the supply voltage.
The first output contact switches according to the function ($\mathrm{a}-\mathrm{j}$) set by the trimmer FUNC.

Function

Control input function description:

- Contact START starts the time function
- INHIBIT contact pauses timing (pause)
- The RESET contact simulates switching the supply voltage on and off

Same for all features:

- If the control contact START is closed and the supply voltage is connected, the time function is activated when the supply voltage is connected.
- Closing the control contact INHIBIT pauses the timing, after opening the control contact INHIBIT timing continues from the moment of interruption.
- If the INHIBIT control contact is closed, the START control contact is activated and the timing is paused.
- Closing the control contact RESET immediately terminates the timing and the relay opens, just as when the supply voltage is disconnected.
- If the control contact RESET is closed and then the control contact START is closed, the time function is activated when the control contact RESET is opened as well as when the supply voltage is connected.

a. ON DELAY with Control Signal

When the supply voltage is applied, the relay is open. If the control contact START is closed, the time delay T starts.
The closing of the START control contact during timing is ignored.
b. INTERVAL ON with Control Signal

When the supply voltage is applied, the relay is open. When the control contact START is closed, the relay closes and the time delay T begins.
If the START control contact is open during timing, the time interval is immediately terminated and the relay opens.

c. FLASHER - ON first with Control Signal

When the supply voltage is applied, the relay is open. When the START control contact is closed, the relay energizes and starts the delay timeT. After the end of the timing relay opens and again runs delay time T . Upon completion timing again switches, and the sequence is repeated until the supply voltage is disconnected.

d. FLASHER - OFF first with Control Signal

When the supply voltage is applied, the relay is open. When the START control contact is closed, starts the time delay T. After the end of the timing relay closes and again runs delay time T . After the end of the timing relay opens and the sequence is repeated until the supply voltage is disconnected.

e. OFF DELAY

When the supply voltage is applied, the relay is open. If the control contact START is closed, the relay closes. After tripping Contact Start starts the delay time T. After the end of the timing relay is switched off.

f. SINGLE SHOT

When the supply voltage is applied, the relay is open. When the START control contact is closed, the relay energizes and starts the delay time T. After the end of the timing relay is switched off. The closing of the START control contact during timing is ignored.

g. WATCHDOG

When the supply voltage is applied, the relay is open. When the START control contact is closed, the relay energizes and starts the delay time T. After the end of the timing relay is switched off. Closing control contact START during timing triggers a new time delay T the relay closing time is thus increased.

h. PULSE GENERATOR 0.5 s with Control Signal

When the supply voltage is applied, the relay is open. When the START control contact is closed, starts the time delay T. After the end of the timing relay switches for the fixed time (0.5 sec).

i. INTERVAL ON/OFF

When the supply voltage is applied, the relay is open. When the START control contact is closed, the relay energizes and starts the delay time T. After the end of the timing relay is switched off. By opening the control contact start relay again closes and starts the delay time T. After the end of the timing relay is switched off.

If the START control contact is open during timing, a restart occurs - the relay remains closed and a new time delay T begins. When the timing is complete, the relay opens.

j. ON/OFF DELAY

When the supply voltage is applied, the relay is open. When the START control contact is closed, starts the time delay T. After the end of the timing relay switches. Opening the control contact START starts a new time delay T. When the timing is complete, the relay opens.

If the START control contact is open during timing, a restart occurs - the relay closes and a new time delay T begins. When the timing is complete, the relay opens.

VS308U
Supply voltage:
AC/DC 12-240 V
Output contacts:
$3 x$ changeover/TPDT 8 A .
page 32

- Power relay used for switching larger load output, strengthen or "multiplying" contacts of the existing device
- In the design 1-MODULE , DIN rail mounting, output status indicated by high intensity LED with choice of LED color (red, green, blue or white LED*).

Technical parameters	VS116U	VS308U
Supply terminals:	A1-A2	
Voltage range:	$\begin{gathered} \text { AC/DC } 12-240 \mathrm{~V} \\ (50-60 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { AC/DC } 12-240 \mathrm{~V} \\ (50-60 \mathrm{~Hz}) \end{gathered}$
Burden (max.):	$\begin{gathered} \mathrm{AC} 0.7-3 \mathrm{VA} / \mathrm{DC} \\ 0.5-1.7 \mathrm{~W} \end{gathered}$	$\begin{gathered} \mathrm{AC} 0.7-3 \mathrm{VA} / \mathrm{DC} \\ 0.5-1.7 \mathrm{~W} \end{gathered}$
Supply terminals:	x	x
Voltage range:	X	X
Burden:	x	x
Supply voltage tolerance:	$-15 \% ;+10 \%$	
Max. dissipated power (Un + terminals):	4 W	3 W
Output		
Number of contacts:	$1 \times$ changeover/SPDT $\left(\mathrm{AgSnO}_{2}\right)$	3 x changeover/TPDT (AgNi/Silver Alloy)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1} 11 \mathrm{HP}\|240 \mathrm{Vac}, 1 / 2 \mathrm{HP}\| 120 \mathrm{Vac} ;$ PD. B300	8 A/AC1; 1/2 HP\|240Vac; PD. B300
Breaking capacity:	4000VA/AC1, 384W/ DC	2000VA/AC1, 192W/ DC
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$	$10 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	250V AC/24V DC	
Output indication:	high intensity LED	
Mechanical life:	30.000 .000 ops.	
Electrical life (AC1):	100.000 ops.	60.000 ops.
Time between switching:	min. 2 s	
Other information		
Operating temperature:	$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectric strength:	4 kV (supply-output)	
Operating position:	any	
Mounting:	DIN rail EN 60715	
Protection degree:	IP40 from front panel/IP20 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm^{2}):	max. 1×2.5 or 2×1.5 max. 1×2.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7{ }^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$	
Weight:	59 g (2.1 oz.)	$80 \mathrm{~g} \mathrm{(2.8} \mathrm{oz)}$.
Standards:	EN 60669-1, EN 60669-2-1	

Description

VS116U
Supply terminals
(A1-A3-A2)

VS308U

VS116U

VS308U

EAN codes

VS116U/red	8595188124607	VS308U/red	8595188130103
VS116U/green	8595188136433	VS308U/green	8595188136440
VS116U/white	8595188138482	VS308U/white	8595188138512
VS116U/blue	8595188138475	VS308U/blue	8595188138505

Order code

VS116U/red:	VS308U/red: 3460	
	VS116U/green: 3643	VS308U/green: 3644
VS116U/white:	VS308U/white: 3848	3851
	VS116U/blue: 3847	VS308U/blue: 3850

Notes

Max. time of changeover of contact is 10 ms .

* possibility to choose blue and white color of LED for power relays line VS in case of minimal order quantity 100 pcs.

Installation contactors

Installation contactors VS

Number of contacts: $1 \times 20 \mathrm{~A}$. Configuration of switching and breaking contacts: $10,01$.
page 35

VS220
Number of contacts: $2 \times 20 \mathrm{~A}$. Configuration of switching and breaking contacts: 20 , 11, 02.
page 35

VS425
Number of contacts: 4×25 A. Configuration of switching and breaking contacts $40,31,22,04$. page 35

VS440
Number of contacts: $4 \times 40 \mathrm{~A}$. Configuration of switching and breaking contacts $40,31,22,04$. page 35

VS463
Number of contacts: $4 \times 63 \mathrm{~A}$. Configuration of switching and breaking contacts 40,31, 22. page 35

* 3.8 VA/3.8 W for -04 version of contacts
** Note: If several contactors are mounted close together a gap of 9 mm must be maintained between every other contactor.
*** HP rating: VS120 \& VS220: 1-phase 1 HP|240 Vac, 1/3 HP|120 Vac; PD. B300, P300
VS325 \& VS425: 1-phase 1 HP|240 Vac, 1/3 HP|120 Vac; 3-phase 3 HP|240 Vac, 5 HP|460 Vac; PD. B300, P300 VS340 \& VS440: 1-phase 3 HP|240 Vac, 1 HP|120 Vac; 3-phase 7 HP|240 Vac, 15 HP|460 Vac; PD. B300, P300 VS363 \& VS463: 1-phase 5 HP|240 Vac, 2 HP|120 Vac; 3-phase 10 HP|240 Vac, 20 HP|460 Vac; PD. B300, P300

VS120

VS120-01

VS325

VS325-30

VS220
VS220-20

VS220-11

VS220-02

VS340
VS340-30

VS425

VS425-22

VS425-13

VS425-04

VS440

VS440-40

VS440-22

VS463

Auxiliary contacts for VS425, VS440, VS463

Datas of auxiliary contacts for VSK-11 and VSK-20

Rated insulation voltage (Ui):
Dielectric strength:
Rated current 230 V (AC 15):
Rated current 400 V (AC 15):
Max. switching frequence:
The max. number of switching for max. load:
Minimal load:
Short circuit protection with the fuse char. aM: Solid/Stranded conductor (max):

Maximal torque:
Weight:
Dimensions:
-5 .. $+55^{\circ} \mathrm{C}\left(23\right.$.. $\left.131^{\circ} \mathrm{F}\right)$
500 V
4 kV

600 sep./hod.
$\geq 12 \mathrm{~V}, \geq 10 \mathrm{~mA}$
6 A
$2.5 \mathrm{~mm}^{2} / 2.5 \mathrm{~mm}^{2}$ (AWG 10) 0.8 Nm

10 g (0.35 oz.)
$10 \times 85 \times 60 \mathrm{~mm}\left(0.4^{\prime \prime} \times 3.35^{\prime \prime} \times 2.4^{\prime}\right)$

Connection of auxiliary contact VSK-11 and VSK-20

EAN code
see page 59

VSK-20

TYPE OF LIGHT	OUTPUT (W)	1 (A)	VS120	VS220	Number of lights on one contactor's contact		
					VS425	VS440	VS463
Incandescent lamps	60	0.26	33	33	33	65	85
	100	0.43	20	20	20	40	50
	200	0.87	10	10	10	20	25
	500	2.17	3	3	3	8	10
	1000	4.35	1	1	1	4	5
Flourescent lamps	18	0.37	22	22	24	90	140
	24	0.35	22	22	24	90	140
	36	0.43	17	17	20	65	95
	58	0.67	14	14	17	45	70
Flourescent lamps lead-lag circuit	18	0.11	2×30	2×30	2×40	2×100	2×150
	24	0.14	2×24	2×24	2×31	2×78	2×118
	36	0.22	2×17	2×17	2×24	2×65	2×95
	58	0.35	2×10	2×10	2×14	2×40	2×60
Flourescent lamps parallel correction	18	0.12	7	7	8	48	73
	24	0.15	7	7	8	48	73
	36	0.2	7	7	8	48	73
	58	0.32	4	4	5	31	47
Flourescent lamps with electronic ballast units (EVG)	1×18	0.09	25	25	35	100	140
	1×36	0.16	15	15	20	52	75
	1×58	0.25	14	14	19	50	72
	2×18	0.17	12	12	17	50	70
	2×36	0.32	7	7	10	26	38
	2×58	0.49	7	7	9	25	36
High-pressure mercury-vapour lamps uncorrected	50	0.61	14	14	18	38	55
	80	0.8	10	10	13	29	42
	125	1.15	7	7	9	20	29
	250	2.15	4	4	5	10	15
	400	3.25	2	2	3	7	10
	700	5.4	1	1	2	4	6
	1000	7.5	1	1	1	3	4
High-pressure mercury-vapour lamps parallel correction	50	0.28	4	4	5	31	47
	80	0.41	4	4	5	27	41
	125	0.65	3	3	4	22	33
	250	1.22	1	1	2	12	18
	400	1.95	1	1	1	9	13
	700	3.45	-	-	-	5	7
	1000	4.8	-	-	-	4	5
Halogen metal vapour lamps uncorrected	35	0.53	18	18	22	43	60
	70	1	10	10	12	23	32
	150	1.8	5	5	7	12	18
	250	3	3	3	4	7	10
	400	3.5	3	3	3	6	9
	1000	9.5	1	1	1	2	3
	2000	16.5	-	-	-	1	1
Halogen metalvapour lamps parallel correction	35	0.25	5	5	6	36	50
	70	0.45	2	2	3	18	25
	150	0.75	1	1	1	11	15
	250	1.5	-	-	1	6	9
	400	2.5	-	-	1	6	8
	1000	5.8	-	-	-	2	3
	2000	11.5	-	-	-	1	2
High-pressure sodium-vapour lamps uncorrected	150	1.8	5	5	6	17	22
	250	3	3	3	4	10	13
	400	4.7	2	2	2	6	8
	1000	10.3	-	-	1	3	3
High-pressure sodium-vapour lamps parallel correction	150	0.83	1	1	1	11	16
	250	1.5	-	-	1	6	10
	400	2.4	-	-	-	4	6
	1000	6.3	-	-	-	2	3
Low-pressure sodium-vapour lamps uncorrected	18	0.35	22	22	27	71	90
	35	1.5	7	7	9	23	30
	55	1.5	7	7	9	23	30
	90	2.4	4	4	5	14	19
	135	3.5	3	3	4	10	13
	180	3.3	3	3	4	10	13
Low-pressure sodium-vapour lamps parallel correction	18	0.35	6	6	7	44	66
	35	0.31	1	1	1	11	16
	55	0.42	1	1	1	11	16
	90	0.63	1	1	1	8	12
	135	0.94	-	-	-	4	7
	180	1.16	-	-	-	5	8

EAN codes for VS

VS120
VS120-01 24V AC/DC: 8595188129848 VS120-01 230V AC/DC: 8595188123105

VS120-10 24V AC/DC: 8595188129367 VS120-10 230V AC/DC: 8595188123112

VS220
VS220-02 24V AC/DC: 8595188129381 VS220-02 120V AC/DC: 8595188138628 VS220-02 230V AC/DC: 8595188121422

VS220-11 24V AC/DC: 8595188129374 VS220-11 48V AC/DC: 8595188129398 VS220-11 120V AC/DC: 8595188130790 VS220-11 230V AC/DC: 8595188121408

VS220-20 24V AC/DC: 8595188125253 VS220-20 48V AC/DC: 8595188129411 VS220-20 120V AC/DC: 8595188129428 VS220-20 230V AC/DC: 8595188121392

VS463

VS463-22 24V AC/DC: 8595188129794 VS463-22 230V AC/DC: 8595188121514

VS463-31 24V AC/DC: 8595188129596 VS463-31 120V AC/DC: 8595188137904 VS463-31 230V AC/DC: 8595188121507

VS463-40 24V AC/DC: 8595188129589 VS463-40-48V AC/DC: 8595188160612 VS463-40 120V AC/DC: 8595188140652 VS463-40 230V AC/DC: 8595188121491

VS425

VS425-04 24V AC/DC: 8595188129527 VS425-04 48V AC/DC: 8595188129558 VS425-04 120V AC/DC: 8595188160032 VS425-04 230V AC/DC: 8595188121682

VS425-13 230V AC/DC: 8595188129473

VS425-22 24V AC/DC: 8595188129541 VS425-22 230V AC/DC: 8595188121675

VS425-31 24V AC/DC: 8595188129497 VS425-31 48V AC/DC: 8595188137898 VS425-31 120V AC/DC: 8595188129534 VS425-31 230V AC/DC: 8595188121668

VS425-40 24V AC/DC: 8595188129480 VS425-40 48V AC/DC: 8595188136174 VS425-40 230V AC/DC: 8595188121651

VS440

VS440-04 24V AC/DC: 8595188129299 VS440-04 120V AC/DC: 8595188129305 VS440-04 230V AC/DC: 8595188121484

VS440-22 24V AC/DC: 8595188129787 VS440-22 230V AC/DC: 8595188121477

VS440-31 24V AC/DC: 8595188129572 VS440-31 230V AC/DC: 8595188121460

VS440-40 24V AC/DC: 8595188129565 VS440-40 120V AC/DC: 8595188138567 VS440-40 230V AC/DC: 8595188121453

EAN codes for VS

c U_{L} us

VS120

VS120-10UL 230V AC/DC: 8595188189880 VS120-10UL 120V AC/DC: 8595188189897 VS120-10UL 24V AC/DC: 8595188189903

VS120-01UL 230V AC/DC: 8595188189910 VS120-01UL 120V AC/DC: 8595188189927 VS120-01UL 24V AC/DC: 8595188189934 VS220

VS220-20UL 230V AC/DC: 8595188189828 VS220-20UL 120V AC/DC: 8595188189835 VS220-20UL 24V AC/DC: 8595188189842

VS220-11UL 230V AC/DC: 8595188189859 VS220-11UL 120V AC/DC: 8595188189866 VS220-11UL 24V AC/DC: 8595188189873

VS220-02UL 230V AC/DC: 8595188189941 VS220-02UL 120V AC/DC: 8595188189958 VS220-02UL 24V AC/DC: 8595188189965

VS325

VS325-30UL 230V AC/DC: 8595188190039 VS325-30UL 120V AC/DC: 8595188190046 VS325-30UL 24V AC/DC: 8595188190053

VS425

VS425-40UL 230V AC/DC: 8595188189972 VS425-40UL 120V AC/DC: 8595188189989 VS425-40UL 24V AC/DC: 8595188189996

VS425-31UL 230V AC/DC: 8595188190008 VS425-31UL 120V AC/DC: 8595188190015 VS425-31UL 24V AC/DC: 8595188190022

VS425-22UL 230V AC/DC: 8595188190060 VS425-22UL 120V AC/DC: 8595188190077 VS425-22UL 24V AC/DC: 8595188190084

VS425-04UL 230V AC/DC: 8595188190091 VS425-04UL 120V AC/DC: 8595188190107 VS425-04UL 24V AC/DC: 8595188190114

VS440

VS440-40UL 230V AC/DC: 8595188190121 VS440-40UL 120V AC/DC: 8595188190138 VS440-40UL 24V AC/DC: 8595188190145

VS440-31UL 230V AC/DC: 8595188190152 VS440-31UL 120V AC/DC: 8595188190169 VS440-31UL 24V AC/DC: 8595188190176

VS440-22UL 230V AC/DC: 8595188190213 VS440-22UL 120V AC/DC: 8595188190220 VS440-22UL 24V AC/DC: 8595188190237

VS440-04UL 230V AC/DC: 8595188190244 VS440-04UL 120V AC/DC: 8595188190251 VS440-04UL 24V AC/DC: 8595188190268

VS363

VS363-30UL 230V AC/DC: 8595188190336 VS363-30UL 120V AC/DC: 8595188190343 VS363-30UL 24V AC/DC: 8595188190350

VS463

VS463-40UL 230V AC/DC: 8595188190275 VS463-40UL 120V AC/DC: 8595188190282 VS463-40UL 24V AC/DC: 8595188190299

VS463-31UL 230V AC/DC: 8595188190305 VS463-31UL 120V AC/DC: 8595188190312 VS463-31UL 24V AC/DC: 8595188190329

VS463-22UL 230V AC/DC: 8595188190367 VS463-22UL 120V AC/DC: 8595188190374 VS463-22UL 24V AC/DC: 8595188190381

VS340

VS340-30UL 230V AC/DC: 8595188190183 VS340-30UL 120V AC/DC: 8595188190190 VS340-30UL 24V AC/DC: 8595188190206

EAN codes for VSK and covers

[^4]VSK-20: 8595188121606

Switching power supplies
DC, unregulated

Voltage 12 V

Voltage 24 V

$\stackrel{\otimes}{\underset{\imath}{\lambda}}$	$\begin{aligned} & \text { 듬 } \\ & 0 \\ & 0 \end{aligned}$			Output					Output protection against				O	
				$\begin{aligned} & \text { ㅇ } \\ & \frac{0}{0} \\ & \stackrel{1}{c} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { 듣 } \\ & \text { N } \\ & \text { n } \end{aligned}$	\cup 0 0 0 0 0			$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \frac{2}{2} \\ & \frac{U}{U} \\ & \frac{1}{\\|} \\ & 0 \end{aligned}$		Temperature			
PS1M-15/12V	1M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 12 V	1.25 A	\bullet	\bullet	X	Fixed output voltage DC 12 V . Power: 15 W.		
PS1M-15/24V	1M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 24V	0.625 A	-	\bullet	X	Fixed output voltage DC 24 V . Power: 15 W.		
PS2M-24/12V	2M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 12V	2 A	-	\bullet	X	Fixed output voltage DC 12 V . Power: 24 W.		
PS2M-30/24V	2M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 24V	1.25 A	-	\bullet	X	Fixed output voltage DC 24 V . Power: 30 W.		
PS3M-54/12V	3M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 12 V	4.5 A	\bullet	\bullet	X	Fixed output voltage DC 12 V . Power: 54 W.		
PS3M-60/24V	3M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 24V	2.5 A	\bullet	\bullet	X	Fixed output voltage DC 24 V . Power: 60 W.		
PS4M-85/12V	4M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 12 V	7.1 A	-	\bullet	X	Fixed output voltage DC 12V. Power: 85 W.		
PS4M-92/24V	4M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 24V	3.83 A	\bullet	\bullet	X	Fixed output voltage DC 24 V . Power: 92 W.		
PS6M-135/12V	6M-DIN	AC 100-240V	X	X	-	\bullet	DC 12V	10.2 A	-	\bullet	X	Fixed output voltage DC 12 V . Power: $122 \mathrm{~W}(120 \mathrm{~V}), 135 \mathrm{~W}(230 \mathrm{~V}$		
PS6M-150/24V	6M-DIN	AC 100-240V	X	X	\bullet	\bullet	DC 24V	5.3 A	\bullet	-	X	Fixed output voltage DC 12V. Power: 85 W.		

[^5]
Description

Connection

$\begin{aligned} & \text { PS1M-15/12V } \\ & \text { (PS1M-15/24V) } \end{aligned}$	$\begin{aligned} & \text { PS2M-24/12V } \\ & \text { (PS2M-30/24V) } \end{aligned}$	$\begin{gathered} \text { PS3M-54/12V } \\ \text { (PS3M-60/24V) } \end{gathered}$	$\begin{gathered} \text { PS4M-85/12V } \\ \text { (PS4M-92/24V) } \end{gathered}$	$\begin{aligned} & \text { PS6M-135/12V } \\ & \text { (PS6M-150/24V) } \end{aligned}$
$\begin{gathered} \mathrm{DC} 12 \mathrm{~V} / 1.25 \mathrm{~A} \\ (\mathrm{DC} 24 \mathrm{~V} / 0.625 \mathrm{~A}) \end{gathered}$	$\begin{gathered} \mathrm{DC} 12 \mathrm{~V} / 2 \mathrm{~A} \\ (\mathrm{DC} 24 \mathrm{~V} / 1.25 \mathrm{~A}) \end{gathered}$	$\begin{gathered} \mathrm{DC} 12 \mathrm{~V} / 4.5 \mathrm{~A} \\ (\mathrm{DC} 24 \mathrm{~V} / 2.5 \mathrm{~A}) \end{gathered}$	$\begin{gathered} \mathrm{DC} 12 \mathrm{~V} / 7.1 \mathrm{~A} \\ (\mathrm{DC} 24 \mathrm{~V} / 3.83 \mathrm{~A}) \end{gathered}$	DC $12 \mathrm{~V} / 11.3 \mathrm{~A} / 230 \mathrm{~V}, 10.2 \mathrm{~A} / 120 \mathrm{~V}$ (DC $24 \mathrm{~V} / 6.25 \mathrm{~A} / 230 \mathrm{~V}, 5.3 \mathrm{~A} / 120 \mathrm{~V}$)
$\begin{array}{ll} + & - \\ \varnothing & \varnothing \\ \hline \end{array}$	$\begin{array}{ll} -\varnothing & + \\ & \\ \hline \end{array}$	$\begin{array}{ll} -\phi & + \\ & \\ \hline \end{array}$	$\begin{array}{ll} -\varnothing & + \\ & \\ \hline \end{array}$	$\begin{array}{ll} -\varnothing & + \\ & \\ \hline \end{array}$
\varnothing ¢			$\varnothing \varnothing$	$\varnothing \quad \varnothing$
$\mathrm{N} \quad \mathrm{L}$	N	N	N	N
AC $100-240 \mathrm{~V}$ ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) DC 145-330V	AC 100-240V ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) DC 145-330 V	AC $100-240 \mathrm{~V}$ ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) DC 145-330 V	AC 100-240V ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) DC 145-330 V	AC $100-240 \mathrm{~V}$ ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) DC 145-330V

Explanation of symbols

TYPE OF	bulbs, halogen lamps	low-voltage el.bulbs $12 / 24 \mathrm{~V}$ wound transformers	low-voltage el.bulbs 12/24V electronic transformers	ESL dimmable compact fluorescent lamps	Dimmable LED bulbs (triac dimmer)	Dimmable LED bulbs (dimmer with MOSFET)
LOAD (symbols)		$F_{+-}^{-} F_{[}^{-}$	$\cdots=\sqrt{\square}$ C			LED

Demonstrated symbols are informative

Explanation:

Dimmer with designated load:
R-resistive
L-inductive
C - capacitive
ESL - energy saving bulbs
LED ${ }^{1}$ - dimmable LED bulbs, designed for dimmers with phase-controlled rising edge (triac dimmers)
LED 2 - dimmable LED bulbs designed for dimmers with phase or phase-to-phase phase control (dimmers with MOSFET).

IPxx protection - under normal conditions: normal conditions are understood as such conditions of operating an electrical device, installation and power supply network for which the entire device is designed, produced and installed. Upon these normal conditions of use and upon normal maintenance, all protective devices must be effective throughout the entire expected service life of the product.

Recommendation for mounting modular dimmers: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm} / 0.4^{\prime \prime}$) on side of the device to ensure better cooling of the device.

1-phase

Type	$\begin{aligned} & \text { 듬 } \\ & 0 . \bar{u} \end{aligned}$			Features					Phase			Setting					¢
				$\begin{aligned} & \tilde{0} \\ & \stackrel{\omega}{c} \\ & \frac{0}{\alpha} \end{aligned}$		\geqslant	$\stackrel{\rightharpoonup}{\mathrm{v}}$	$\underset{\sim V}{2}$	$\stackrel{\cong}{\stackrel{y}{亏}}$	$\begin{aligned} & \stackrel{y}{\stackrel{0}{0}} \\ & \stackrel{\rightharpoonup}{\square} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \stackrel{\rightharpoonup}{u} \\ & \sum_{3}^{3} \end{aligned}$	$\frac{त}{\square}$					
HRN-31 HRN-31/2	1-M	monitored voltage	x	1	AC/DC 48-276V	\bullet	\bullet	\bullet	x	x	x	\bullet	x	\bullet	-	All types have 9 functions in total. The delay is adjustable from $0-10$ seconds (to eliminate short-term outages or peaks). The lower voltage level (Umin) is set in \% of the upper level (Umax).	45
HRN-32/2	1-M	monitored voltage	x	1	AC/DC 48-276 V	\bullet	\bullet	\bullet	x	x	x	\bullet	x	\bullet	-		
HRN-36 HRN-36/2	1-M	monitored voltage	x	1	DC $6-30 \mathrm{~V}$	\bullet	\bullet	\bullet	x	x	x	\bullet	x	\bullet	\bullet	HRN-3x, PMR1-3x: $1 x$ output contact HRN-3x/2, PMR1-3x/2: $2 x$ output contact	
HRN-39 HRN-39/2	1-M	monitored voltage	x	1	AC/DC 24-150 V	\bullet	\bullet	\bullet	x	x	x	\bullet	x	\bullet	-	Old types replacement:	
PMR1-31 PMR1-31/2	8-PIN	monitored voltage	x	1	AC/DC 48-276 V	\bullet	\bullet	\bullet	x	x	x	\bullet	x	\bullet	-	$\begin{aligned} & \text { HRN-33 > HRN-31 } \\ & \text { HRN-34 > HRN-36 } \\ & \text { HRN-35 > HRN-32/2 } \end{aligned}$	
PMR1-36 PMR1-36/2	8-PIN	monitored voltage	x	1	DC $6-30 \mathrm{~V}$	\bullet	\bullet	\bullet	x	x	x	\bullet	x	\bullet	-	HRN-37 > HRN-39	
PMR1-39 PMR1-39/2	8-PIN	monitored voltage	x	1	AC/DC 24-150V	\bullet	\bullet	\bullet	x	x	x	\bullet	x	\bullet	-	undervoltage	
HRN-56/208 HRN-56/240 HRN-56/400	1-M	monitored voltage	x	3	AC $3 \times 125-276 \mathrm{~V}$ AC $3 \times 144-276 \mathrm{~V}$ AC $3 \times 240-460 \mathrm{~V}$	x	\bullet	x	\bullet	\bullet	x	\bullet	x	x	x	Thanks to the power supply from all three phases, the relay isoperational even if one phase fails.	49
HRN-56/480 HRN-56/575	3-M	monitored voltage	x	3	$\begin{aligned} & \text { AC } 3 \times 228-550 \mathrm{~V} \\ & \text { AC } 3 \times 345-660 \mathrm{~V} \end{aligned}$	x	\bullet	x	\bullet	\bullet	x	\bullet	x	x	x		
HRN3-70	3-M	monitored voltage	x	3	AC $3 \times 190-500 \mathrm{~V}$	x	x	$\underset{\text { (fixed) }}{\bullet}$	\bullet	\bullet	$\underset{(+O F F)}{\bullet}$	\bullet	\bullet	x	\bullet	Selectable nominal voltage from 190 to 500 V. Adjustable restart delay from 1 to 300 s . Two output contacts, changeover 16 A . * (o-fixed) $=$ over voltage value is fixed (110% from selected range).	50
PMR3-70	3-M	monitored voltage	x	3	AC $3 \times 190-500 \mathrm{~V}$	x	\times	(fixed)	\bullet	-	(+OfF)	\bullet	\bullet	x	-		
HRN3-80	1-M	monitored voltage	x	3	AC3x 208 -480V	x	\bullet	x	\bullet	\bullet	(+OfF)	\bullet	x	x	x	Selectable nominal voltage from 208 to 480 V .	52
HRN3-81	1-M	monitored voltage	x	3	AC $3 \times 208-480 \mathrm{~V}$	x	x	x	\bullet	-	(+OFF)	\bullet	x	x	x	Works in range from 208 to 480 V .	52

HRN-36/2: 8595188182553
HRN-39: 8595188184960
HRN-39/2: 8595188184939

Technical parameters	$\begin{gathered} \text { HRN-31 } \\ \text { HRN-31/2 } \end{gathered}$	HRN-32/2	$\begin{gathered} \text { HRN-36 } \\ \text { HRN-36/2 } \end{gathered}$	$\begin{gathered} \text { HRN-39 } \\ \text { HRN-39/2 } \end{gathered}$
Supply and measuring				
Supply/monitored terminals:	A1-A2			
Supply/monitored voltage:	AC/DC $48-276 \mathrm{~V}$ (AC $50-60 \mathrm{~Hz}$)	AC/DC 48-276V (AC $50-60 \mathrm{~Hz}$)	DC 6-30V	$\begin{aligned} & \text { AC/DC } 24-150 \mathrm{~V} \\ & (\mathrm{AC} 50-60 \mathrm{~Hz}) \end{aligned}$
Consumption (max.):	$\begin{aligned} & 2.5 \mathrm{VA} / 0.55 \mathrm{~W} \\ & 2.7 \mathrm{VA} / 0.65 \mathrm{~W} \end{aligned}$	2.7 VA/0.65 W	$\begin{aligned} & 0.35 \mathrm{~W} \\ & 0.5 \mathrm{~W} \end{aligned}$	2.5 VA/0.55 W 2.7 VA/0.65 W
Upper level setting (Umax):	AC 160-276 V	AC 160-276 V	DC $12-30 \mathrm{~V}$	AC $80-150 \mathrm{~V}$
Lower level setting (Umin):	$30-95 \% U \max$	$30-95 \% U m a x$	$50-95 \%$ max	$30-95 \% U \max$
Max. permanent voltage:	AC 276 V	AC 276 V	DC 36 V	AC 276 V
Peak overload (1 s):	AC 290 V	AC 290 V	DC 48 V	AC 290 V
Time delay (d):	300 ms			
Time delay (t):	adjustable, $0.5-10 \mathrm{~s}$			

Accuracy

Setting accuracy (mech.):	$5 \%-$ mechanical setting
Repeat accuracy:	$<1 \%$
Temperature dependency:	$<0.1 \% /{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
Hysteresis	5% (functions O1, U1, W)
(fault to OK):	Umax - Umin (functions O2, U2, U3)

Output

Contact type:	$1 \times$ changeover $2 \times$ changeover	$1 \times$ changeover for each level	$1 \times$ changeover $2 \times$ changeover	$1 \times$ changeover $2 \times$ changeover
Contact material:	AgNi			
Current rating:	$13 \mathrm{~A} / \mathrm{AC1}$; $1 \mathrm{HP}\|240 \mathrm{Vac}, 1 / 2 \mathrm{HP}\| 120 \mathrm{Vac} ;$ PD. B300			
Breaking capacity:	4000 VA/AC1, 384 W/DC1			
Switching voltage:	250 V AC/ 24 V DC			
Power dissipation (max.):	HRN-3x (1.2 W) \| HRN-3x/2 (2.4 W)			
Mechanical life:	10.000.000 ops.			
Electrical life (AC1):	100.000 ops.			
Other information				
Operating temperature:	$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131{ }^{\circ} \mathrm{F}\right)$			
Storage temperature:	$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$			
Dielectric strength:	AC 4 kV (supply - output)			
Operating position:	any			
Mounting:	DIN rail EN 60715			
Protection degree:	IP40 front panel / IP20 terminals			
Overvoltage category:	III.			
Pollution degree:	2			
Cross-wire section - solid/ stranded with ferrule $\left(\mathrm{mm}^{2}\right)$:	max. $1 \times 2.5,2 \times 1.5 /$ max. 1×2.5 (AWG 14)			
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$			
Weight:	$60 \mathrm{~g}(2.11 \mathrm{oz})$	$80 \mathrm{~g}(2.82 \mathrm{oz})$	$59 \mathrm{~g}(2.08 \mathrm{oz})$	$60 \mathrm{~g}(2.11 \mathrm{oz})$
Standards:	EN 60255-1, EN 60255-26, EN 60255-27			

- It is used to monitor the value of alternating or direct voltage in 1-phase circuits.
- Supply voltage from monitored voltage.
- Monitors voltage exceeding the upper voltage level (Umax) and falling below the lower voltage level (Umin) - according to the selected function.
- Smooth adjustment of both voltage levels - the lower level Umin is set in \% of the upper level Umax.
- Adjustable time delay (to eliminate short-term voltage drops and spikes).
- Option to select functions with fault state memory (Latch).
- The fault state memory can be reseted by the control input (R).
- Measures true root mean square value of the voltage - TRUE RMS.
- Type HRN-32/2 has an independent output contact for each voltage level.

Description

Connection

Indication of operating states

01 OVER (hysteresis 5\%)

O2 OVER (hysteresis to Umin)

OL OVER + Latch

OVER:

If the value of the monitored voltage is lower than the set upper level „Umax", the output contact is closed. If the "Umax" is exceeded, the output contact will opens after "the set delay (fault state).
If the voltage falls below the fixed hysteresis (O 1 function) or the set lower level „Umin" (O 2 function), the output contact will closes again
If the OL function (OVER + Latch) is selected, when the upper voltage level „Umax" is exceeded, the output contact remains open even when the voltage returns from the fault state.

Fault memory reset can be done in three ways:

- Short-term interruption of supply voltage
- Using the control input (R)
- By setting the function switch to position R (RESET) or any function without memory fault
The RESET state lasts for 3 s after switching the function switch from the R position to a function with a memory fault (UL, OL, WL).

When moving to any other function from the R position, this delay does not apply.

U1) UNDER (hysteresis 5\%)

(U2) UNDER (hysteresis to Umax)

U3 UNDER (hysteresis to Umax)

UNDER:
If the value of the monitored voltage is higher than the set lower level "Umin", the output contact is closed. When the voltage drops below the „Umin", output contact opens after the set delay (fault state).
If the voltage exceeds the fixed hysteresis (function U1) or the set upper level „Umax" (function U2, U3), the output contact closes again.
If the UL function (UNDER + Latch) is selected, when the voltage drops below the lower level „Umin", the output contact remains open even when returning from the fault state. Fault memory reset can be done as in the previous case.

W WINDOW (hysteresis 5\%)

wL WINDOW + Latch

WINDOW:

If the value of the monitored voltage is lower than upper level "Umax" and at the same time higher than lower level "Umin", the output contact in closed. If the "Umax" is exceeded or drops below the "Umin", output contact opens after the set delay (fault state).
To return from the fault state, a fixed hysteresis is applied.
If the WL function (WINDOW + Latch) is selected, the fault state is again stored in memory and output contact stays open, even when returning from the fault state. Fault memory reset can be done as in the previous cases.

- It is used to monitor the value of alternating or direct voltage in 1-phase circuits.
- Supply voltage from monitored voltage.
- Monitors voltage exceeding the upper voltage level (Umax) and falling below the lower voltage level (Umin) - according to the selected function.
- Smooth adjustment of both voltage levels - the lower level Umin is set in \% of the upper level Umax.
- Adjustable time delay (to eliminate short-term voltage drops and peaks).
- Option to select functions with fault state memory (Latch).
- The fault state memory can be reseted with a button on the panel (RESET).
- Measures true root mean square value of the voltage - TRUE RMS.

PMR1-36:
PMR1-36/2: (855951881888678)
PMR1-39: (8595188188685)
PMR1-39/2: (8595188188692)

Technical parameters	PMR1-31 PMR1-31/2	$\begin{aligned} & \text { PMR1-36 } \\ & \text { PMR1-36/2 } \end{aligned}$	$\begin{gathered} \text { PMR1-39/ } \\ \text { PMR1-39/2 } \end{gathered}$
Supply and measuring			
Supply/monitored terminals:		2-7	
Supply/monitored voltage:	$\begin{gathered} \text { AC/DC } 48-276 \mathrm{~V} \\ (\mathrm{AC} 50-60 \mathrm{~Hz}) \end{gathered}$	$\text { DC } 6-30 \mathrm{~V}$	AC/DC 24-150V (AC $50-60 \mathrm{~Hz}$)
Consumption (max.):	2.5 VA/0.55 W 2.7 VA/0.65 W	$\begin{gathered} 0.35 \mathrm{~W} \\ 0.5 \mathrm{~W} \end{gathered}$	2.5 VA/0.55 W 2.7 VA/0.65 W
Upper level setting (Umax):	AC 160-276 V	DC $12-30 \mathrm{~V}$	AC $80-150 \mathrm{~V}$
Lower level setting (Umin):	$30-95 \% U \max$	50-95\%Umax	30-95\%Umax
Max. permanent voltage:	AC 276 V	DC 36 V	AC 276 V
Peak overload (1 s):	AC 290 V	DC 48 V	AC 290 V
Time delay (d):	300 ms		
Time delay (t):	adjustable, $0.5-10 \mathrm{~s}$		

Time delay
adjustable, $0.5-10 \mathrm{~s}$

Setting accuracy (mech.):
Repeat accuracy:
Temperature dependency:
Hysteresis
(fault to OK):

Output			
Contact type:	$1 \times$ changeover $2 \times$ changeover	$1 \times$ changeover $2 \times$ changeover	$1 \times$ changeover $2 \times$ changeover
Contact material:	AgNi		
Current rating:	$13 \mathrm{~A} / \mathrm{AC1}$; $1 \mathrm{HP}\|240 \mathrm{Vac}, 1 / 2 \mathrm{HP}\| 120 \mathrm{Vac} ;$ PD. B300		
Breaking capacity:	4000 VA/AC1, 384 W/DC1		
Switching voltage:	$250 \mathrm{~V} \mathrm{AC/24V} \mathrm{DC}$		
Power dissipation (max.):	PMR1-3x (1.2 W) \| PMR1-3x/2 (2.4 W)		
Mechanical life:	10.000 .000 ops.		
Electrical life (AC1):	100.000 ops.		
Other information			
Operating temperature:	$-20 . .55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$		
Storage temperature:	$-30 . .70{ }^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$		
Dielectric strength:	AC 4 kV (supply - output)		
Operating position:	any		
Mounting:	DIN rail EN 60715		
Protection degree:	IP40 front panel / IP20 terminals		
Overvoltage category:	III.		
Pollution degree:	2		
Dimensions:	$48 \times 48 \times 79 \mathrm{~mm}\left(1.89^{\prime \prime} \times 1.89^{\prime \prime} \times 3.11^{\prime \prime}\right)$		
Weight:	$\begin{aligned} & 94 \mathrm{~g}(3.32 \mathrm{oz}) \\ & 105 \mathrm{~g}(3.7 \mathrm{oz}) \end{aligned}$	$\begin{aligned} & 94 \mathrm{~g}(3.32 \mathrm{oz}) \\ & 105 \mathrm{~g}(3.7 \mathrm{oz}) \end{aligned}$	$\begin{gathered} 94 \mathrm{~g}(3.32 \mathrm{oz}) \\ 105 \mathrm{~g}(3.7 \mathrm{oz}) \end{gathered}$
Standards:	EN 60255-1, EN 60255-26, EN 60255-27		

Description

PMR1-31

Indication of operating states

OVER (hysteresis to Umin)

OL OVER + Latch

OVER:
If the value of the monitored voltage is lower than the set upper level „Umax", the output contact is closed. If the "Umax" is exceeded, the output contact will opens after the set delay (fault state).
If the voltage falls below the fixed hysteresis (O 1 function) or the set lower level „Umin" (O 2 function), the output contact will closes again.
If the OL function (OVER + Latch) is selected, when the upper voltage level „Umax" is exceeded, the output contact remains open even when the voltage returns from the fault state.

Fault memory reset can be done in three ways:

- Using memory reset button on the panel
- Short-term interruption of supply voltage
- By setting the function switch to position R (RESET) or any function without memory fault
The RESET state lasts for 3 s after switching the function switch from the R position to a function with a memory fault (UL, OL, WL).
When moving to any other function from the R position, this delay does not apply.
(U1) UNDER (hysteresis 5\%)

UNDER (hysteresis to Umax)

UNDER (hysteresis to Umax)

UNDER:

If the value of the monitored voltage is higher than the set lower level "Umin", the output contact is closed. When the voltage drops below the "Umin", output contact opens after the set delay (fault state).
If the voltage exceeds the fixed hysteresis (function U1) or the set upper level „Umax" (function U2, U3), the output contact closes again.
If the UL function (UNDER + Latch) is selected, when the voltage drops below the lower level „Umin", the output contact remains open even when returning from the fault state. Fault memory reset can be done as in the previous case.

W WINDOW (hysteresis 5\%)

wL WINDOW + Latch

WINDOW:

If the value of the monitored voltage is lower than upper level "Umax" and at the same time higher than lower level "Umin", the output contact in closed. If the "Umax" is exceeded or drops below the „Umin", output contact opens after the set delay (fault state).
To return from the fault state, a fixed hysteresis is applied.
If the WL function (WINDOW + Latch) is selected, the fault state is again stored in memory and output contact stays open, even when returning from the fault state. Fault memory reset can be done as in the previous cases.

- Relay monitors phase sequence and failure (e.g. control of correct motor winding etc.).
- Relay is designated for monitoring of 3-phase networks.
- Supply from all phases which means that relay is functional also in case of one phase failure.
- Supply and monitored supply Un:

1-MODULE	3-MODULE
HRN-56/208-3x 208V	HRN-56/480-3x480 V
HRN-56/240-3x240V	HRN-56/575-3x575 V
HRN-56/400-3x400V	

HRN-56/400-3x 400 V
Fixed delay t1 (500 ms), adjustable delay t2 ($0.1-10 \mathrm{~s}$) and fixed delay t3 (max. 1 s).

Description

Function

Connection

Symbol

EAN code
HRN3-70: 8595188188838
PRM3-70: 8595188185288

Technical parameters	HRN3-70	PMR3-70
Supply/monitored terminals:	L1-L2-L3	3-4-5
Supply/monitored voltage:	AC $3 \times 190-500 \mathrm{~V}(50-60 \mathrm{~Hz})$	
Consumption (max.):	2 VA/1 W	
Upper level (Umax):	110% Un	
Lower level (Umin):	$80-95 \%$ Un	
Asymmetry:	adjustable, $2-10 \%$ Un + OFF	
Max. permanent voltage:	AC $3 \times 550 \mathrm{~V}$	
Peak overload (1 s):	AC $3 \times 600 \mathrm{~V}$	
Time delay (t1):	2 s	
Time delay (t2):	adjustable, $0.3-30 \mathrm{~s}$	
Time delay (t3):	adjustable, 1 - 300 s	
Accuracy:		
Hysteresis (fault to OK):	5 \%	
Output		
Contact type:	$2 \times$ changeover (AgNi)	$1 \times$ changeover (AgNi)
Current rating:	$13 \mathrm{~A} / \mathrm{AC1}$; $1 \mathrm{HP}\|240 \mathrm{Vac}, 1 / 2 \mathrm{HP}\| 120 \mathrm{Vac} ;$ PD. B300	
Breaking capacity:	4000 A/AC1, 384 W/DC1	
Switching voltage:	250 V AC/24 V DC	
Power dissipation (max.):	2.4 W	1.2 W
Mechanical life:	10.000.000 ops.	
Electrical life (AC1):	100.000 ops.	
Other information		
Operating temperature:	$-20 . .55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30 . .70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectric strength:		
supply - output 1	AC 4 kV	AC 2.5 kV
supply - output 2	AC 4 kV	-
output 1 - output 2	AC 4 kV	-
Operating position:	any	
Mounting:	DIN rail EN 60715	into socket (8-pin)
Protection degree:	IP40 front panel/IP20terminals	IP40
Overvoltage category:	III.	
Pollution degree:	2	
Cross-wire section - solid/ stranded with ferrule $\left(\mathrm{mm}^{2}\right)$:	max. $1 \times 2.5,2 \times 1.5 /$ max. 1×2.5 (AWG 14)	max. $1 \times 4,2 \times 2.5 /$ max. 1×4 (AWG 12)
Dimensions:	$90 \times 52 \times 66 \mathrm{~mm}$	$48 \times 48 \times 79 \mathrm{~mm}$
Weight:	$140 \mathrm{~g} \mathrm{(4.94} \mathrm{oz)}$	$100 \mathrm{~g}(3.53 \mathrm{oz})$
Standards:	EN 60255-1, EN 60255-26, EN 60255-27	

Range switch (Un)

The range switch has two ranges of phase-to-phase voltage values: low (190 to 250 V) and high (380 to 500V)
After connecting to the supply/monitored voltage, the device evaluates voltage size and selects the corresponding range of values. When switching between individual positions within the selected range, the green "LED Un" will flash briefly.

- It is used for monitoring of voltage, phase failure, sequence and asymmetry in 3-phase network.
- Wide range of monitored voltage with automatic selection of an low/ high range.
- Fixed overvoltage level (Umax), adjustable undervoltage level (Umin).
- Adjustable time delay t2 (to eliminate short-term voltage drops and peaks).
- Adjustable time delay t3 (to eliminate short-term OK state).
- Adjustable asymmetry level with option to turn it OFF.
- Measures true root mean square value of the voltage - TRUE RMS.
- Fault memory reset can be done by RESET button on the panel or by an external opening contact.

Description

HRN3-70

Connection

HRN3-70

PMR3-70

Function

Overvoltage - undervoltage

Graphs legend:
L1, L2, L3 = 3-phase voltage RESET = memory reset
t 1 = time delay, after connecting to voltage
t2 $=$ time delay into fault state
$\mathrm{t} 3=$ time delay to OK state
15-18 = output contact 1 (HRN3) 25-28 = output contact 2 (HRN3)
$1-8=$ output contact (PMR3)
LED >U = overvoltage indication
LED $<\mathrm{U}=$ undervoltage/phase failure indication
LED $\boldsymbol{\lambda}=$ phase failure/asymmetry indication
LED $M=$ memory function indication
LED Un $=$ supply/monitored voltage, time delay t 1 and t 3 indication

Phase asymmetry - failure

Phase sequence

After connecting the device to the supply voltage, all the LEDs on the panel will flash briefly.
If a 3-phase voltage is connected to the monitoring relay and all conditions are met (correct voltage magnitude, sequence and phase asymmetry), the output contacts close after the time delay t1 has elapsed. During the time delay, the green „LED Un" flashes, after the end of the delay it lights up permanently (OK state). - When the voltage exceeds or falls outside the „Umin" and „Umax" levels, after the time delay t2 the green and the corresponding red „LED $>$ " light up. The output contacts are open (fault state). During the time delay, the red LED flashes.

- If the phase sequence is incorrect when the power is connected, after the time delay t1 the green „LED Un" lights up + all 3 red "LEDs \leqslant \& flash simultaneously. The output contact is open (fault state). During the time delay, the green LED flashes.
- When the set phase asymmetry is exceeded, after the time delay t2 the green „LED Un" lights up and the red „LED\&" flashes briefly.

The output contact is open (fault state). During the time delay, the red LED flashes rapidly.

- In the event of a phase failure, the output contacts open without a time delay t2 (fault state), the green "LED Un" and the corresponding red "LED < $\boldsymbol{R}^{\prime \prime}$ light up.
- To return from the fault state to the OK state, the time delay t 3 is always applied. During this time delay, the green "LED Un" flashes.

Reset and fault state memory activation:

By connecting terminals R1-R2 or pins 6-7 in the PLUG-IN version via an external push button with a break contact (RESET), the fault state memory is activated. After turning on the power, the yellow "LED M" on the device panel lights up. If a fault condition occurs, it is stored in memory. The red LED signalize fault just like in mode with fault state memory turned off. If the voltage values return to the set levels, the corresponding red LED will be permanently lit and at the same time the green "LED Un" will start flashing. It is now possible to reset fault memory state, this closes the output contact and the red LED goes out (OK state). Fault memory reset (RESET) is performed either with an external pushbutton or with the pushbutton on device panel.

Technical parameters	HRN3-80	HRN3-81
Supply and measuring		
Supply/monitored terminals:	L1-L2-L3	
Supply/monitored voltage:	AC $3 \times 208-480 \mathrm{~V}(50-60 \mathrm{~Hz})$	
Consumption (max.):	2 VA/1 W	
Range setting:	adjustable	fixed
Lower level setting (Umin):	80-95\%Un	x
Asymmetry setting:	adjustable, $2-10 \%$ Un + OFF	
Max. permanent voltage:	AC $3 \times 550 \mathrm{~V}$	
Peak overload (1 s):	AC $3 \times 600 \mathrm{~V}$	
Time delay (t1):	2 s	
Time delay (t2):	adjustable, $0.3-30 \mathrm{~s}$	

Accuracy

Setting accuracy (mech.):
Repeat accuracy:
Temperature dependency:

Hysteresis (fault to OK):
5%

Output

Contact type:
Current rating:
Breaking capacity:
Switching voltage:
Power dissipation (max.):
Mechanical life:
Electrical life (AC1):

Other information

Operating temperature:
Storage temperature:
Dielectric strength:
Operating position:
Mounting:
Protection degree:
Overvoltage category:
Pollution degree:
Cross-wire section - solid/
stranded with ferrule $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
HRN3-81

- The relay is designed to monitor undervoltage (HRN3-80), phase loss, sequence and asymmetry in 3-phase network.
- Power supply from monitored circuit.
- HRN3-80: Monitors the drop below the lower voltage level (Umin).
- HRN3-80: The lower level of Umin is set in \% of the selected range.
- Wide range of monitored voltage $208-480 \mathrm{~V}$.
- Adjustable time delay (to eliminate short-term voltage drops).
- Measures true root mean square value of the voltage - TRUE RMS.
- Adjustable level of asymmetry with the option to turn it off.

Symbol

HRN3-80
HRN3-81

Connection

Function

Phase sequence:

Phase asymmetry, failure:

After connecting the device to the supply voltage, both LEDs on the panel will flash briefly.
If 3-phase voltage is connected to the monitoring relay and all conditions are met (correct voltage level, phase sequence and asymmetry), the output contact closes after the time delay t1 elapsed.
During the time delay, the green "LED Un" flashes, at the end of the delay "LED Un" lights up continuously (OK state).

When the voltage drops below the lower level „Umin" (HRN3-80 only), after the time delay t2 has elapsed the green and red LEDs are lit. The output contact is open (fault state).
During the time delay t 2 , the red "LED S" flashes quickly.
If the phase sequence is incorrect when the power supply is connected, after the time delay t 1 has elapsed the green and red LED flashes quickly. The output contact is open (fault state).
During the time delay t 1 , the green „LED Un" flashes.
When the set phase asymmetry is exceeded, after the time delay t2 has elapsed the green LED is lit and the red LED flashes briefly. The output contact is open (fault state).
During the time delay t 2 , the red "LED S" flashes quickly.
In the event of phase failure, the output contact opens without a time delay t2 (fault state), the green and red LEDs are lit.

The return from the fault state to the OK state occurs without a time delay.

AC

PRI-34 Multifunction current monitoring relay, measured by built-in current transformer, 5 rated currents ($1 \mathrm{~A}-16 \mathrm{~A}$), 1 A and 5 A range is suitable for external current transformer, AC/DC supply $24-240 \mathrm{~V}$, output 8 A prep. page 56

PRI-51
Monitoring of current by in-built transformer, in-built transformer, 7 ranges, range 5 A is suitable for current transformer, supply and output as PRI-32, difference from PRI-32: direct monitoring and finer ranges (higher sensitivity) = higher accuracy in measuring. page 58

$\stackrel{0}{2}$	$\begin{aligned} & \text { 듬 } \\ & \stackrel{y}{0} \end{aligned}$			Monitored parameters					Setting			$\begin{aligned} & \text { 들 } \\ & \text { 른 } \\ & \text { OU } \end{aligned}$	
				$\begin{aligned} & \tilde{\sim} \\ & \tilde{0} \\ & \frac{\pi}{2} \end{aligned}$	$\begin{aligned} & \text { む } \\ & \underset{\sim}{c} \\ & \underset{\sim}{c} \end{aligned}$	$\bar{\wedge}$	$\overline{\mathrm{v}}$	$\overline{\mathrm{v} \wedge}$	$\frac{त}{0}$	$\begin{aligned} & \frac{n}{y} \\ & \frac{y}{む} \\ & \vdots \\ & \frac{\pi}{x} \end{aligned}$			\%
PRI-32	1-M	$\begin{gathered} \text { AC } 24-240 \mathrm{~V} \\ \text { DC } 24 \mathrm{~V} \end{gathered}$	\bullet	1	AC 1-20 A	\bullet	x	x	x	x	x	Monitors the overflow of the current flowing through the guarded conductor, passed through the hole in the panel.	55
PRI-34/1A PRI-34/2A PRI-34/5A PRI-34/8A PRI-34/16A	1-M	$\begin{gathered} \mathrm{AC} / \mathrm{DC} \\ 24-240 \mathrm{~V} \end{gathered}$	x	1	AC 0.05-1 A AC 0.1-2 A AC 0.25-5A AC 0.4-8 A AC $0.8-16 \mathrm{~A}$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	Monitors the current depending on the selected function. The power supply is not galvanically isolated from the monitored current terminals. It is possible to connect ext. current transformer.	56
PRI-51/0.5A PRI-51/1A PRI-51/0.1-10A PRI-51/2A PRI-51/5A PRI-51/8A PRI-51/16A	1-M	$\begin{gathered} \text { AC } 24-240 \mathrm{~V} \\ \text { DC } 24 \mathrm{~V} \end{gathered}$	\bullet	1	$\begin{gathered} \text { AC 0.05-0.5 A } \\ \text { AC } 0.1-1 \text { A } \\ \text { AC } 0.1-10 \mathrm{~A} \\ \text { AC } 0.2-2 \mathrm{~A} \\ \text { AC } 0.5-5 \mathrm{~A} \\ \text { AC } 0.8-8 \mathrm{~A} \\ \text { AC } 1.6-16 \mathrm{~A} \end{gathered}$	\bullet	x	x	\bullet	x	x	Monitors the excess current flowing through the conductor connected to the monitored terminals. The power supply is galvanically isolated from the monitored current terminals. It is possible to connect ext. current transformer.	58

EAN code
PRI-32: 8595188121965
Technical parameters
PRI-32

Supply circuit		
Supply terminals:	A1-A2	
Voltage range:	AC $24-240 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$	
Burden:	max. 1.5 VA/1 W	
Max. dissipated power (Un + terminals):	2 W	
Operating range:	-15\%; +10\%	
Measuring circuit		
Current range:	1-20 A (AC 50-60 Hz)	
Current adjustment:	potentiometer	
Accuracy		
Setting accuracy (mech.):	5 \%	
Repeat accuracy:	< 1 \%	
Temperature dependancy:	$<0.1 \% /{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
Limit values tolerance:	5 \%	
Overload capacity:	max. $100 \mathrm{~A} / 10 \mathrm{~s}$	
Output		
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)	
Current rating:	8 A/AC1; 1/3 HP\|240 Vac, 1/4 HP	120 Vac; PD. B300
Breaking capacity:	2000 VA/AC1, 240 W/DC	
Output indication:	red LED	
Mechanical life:	60.000.000 ops.	
Electrical life (AC1):	150.000 ops.	
Other information		
Operating temperature:	$-20 . .55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30 . .70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectrical strength:	4 kV (supply - output)	
Operating position:	any	
Mounting:	DIN rail EN 60715	
Protection degree:	IP40 from front panel/IP10 terminals	

Overvoltage category:
Pollution degree:
Max. cable size (mm^{2}):

Dimensions:
Weight:
Standards:
\square
solid wire max. 2×2.5 or 1×4,
with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
$90 \times 17.6 \times 80.5 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 3.2^{\prime}\right)$

EN 60255-1, EN 60255-26, EN 60255-27

- Current transformer is a part of the product. Inside this transformer there is a wire which senses the volume of flowing current.
- This construction reduces thermal stress of product when compared with conventional solutions with inbuilt shunt, and increases current range up to 20 Amps , and galvanically separates monitored circuit.
- For heating bars in sliding rails, heating cables, indication of current flow, controlling of 1-phase motor consumption,...
- Supply is galvanically separated from measuring current.
- Current exceeding - current flowing through monitored wire must not exceed 100 A .

Description

Function

Monitoring relay PRI-32 serves to monitor current level in single phase AC circuits. Due to its fluent adjustment of release current, it is predestined for applications with necessity of current flow indication, and can be used as precedence relay. Output relay is off in normal state. In case the set current level is exceeded, it switches. Multivoltage supply is an advantage.

Connection

EAN code
PRI-34/1A: 8595188188968
$\begin{array}{l:l}\text { PRI-34/2A: } & 8595188182829 \\ \text { PRI-34/5A: } & 8595188182836\end{array}$ PRI-34/8A: 8595188188975 PRI-34/16A: 8595188182843

Technical parameters	PRI-34				
Supply					
Supply terminals:	A1-A2				
Supply voltage:	AC/DC $24-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$				
Consumption (max.):	3.8 VA/0.7 W				
Supply voltage tolerance:	-15 \%; +10 \%				
Measuring circuit					
Current range:	$\begin{gathered} \text { PRI-34/1A } \mid \mathrm{In}-1 \mathrm{~A} \\ \mathrm{PRI-34/2A\mid In-2A} \\ \mathrm{PRI}-34 / 5 \mathrm{~A} \mid \mathrm{In}-5 \mathrm{~A} \\ \mathrm{PRI}-34 / 8 \mathrm{~A} \mid \mathrm{In}-8 \mathrm{~A} \\ \mathrm{PRI}-34 / 16 \mathrm{~A} \mid \mathrm{In}-16 \mathrm{~A} \\ \text { (AC } 50-60 \mathrm{~Hz}) \end{gathered}$				
Max. permanent current \| peak overload (1 s):	PRI-34/1A \| 2A/10A PRI-34/2A	4A/10A PRI-34/5A	10A/16A PRI-34/8A	16A/16A PRI-34/16A	17A/32A
Upper level setting (Imax):	10-100\%ln				
Lower level setting (Imin):	$5-95 \% \mathrm{ln}$				
Time delay (d):	300 ms				
Time delay (t):	adjustable, $0.5-10 \mathrm{~s}$				
Accuracy					
Setting accuracy (mech.):	5 \%				
Repeat accuracy:	< 1 \%				
Temperature dependency:	$<0.1 \% /{ }^{\circ} \mathrm{C}$				
Limit values tolerance:	5 \%				
Hysteresis (fault to OK):	5 \% (function O1, U1, W) Imax-Imin (function O2, U2)				

Output

Contact type:	$1 \times$ changeover (AgNi)
Current rating:	$13 \mathrm{~A} / \mathrm{AC} 1 ; 1 \mathrm{HP} / 240 \mathrm{Vac}, 1 / 2 \mathrm{HP} / 120 \mathrm{Vac} ;$ PD. B300
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC} 1,384 \mathrm{~W} / \mathrm{DC1}$
Switching voltage:	$250 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$
Power dissipation (max.):	1.2 W
Mechanical life:	10.000 .000 ops.
Electrical life (AC1):	100.000 ops.

Other information
Operating temperature:
$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$
$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$
AC 4 kV (supply - output)
any
DIN rail EN 60715
IP40 front panel / IP20 terminals
Protection degree:
Overvoltage category:
Pollution degree:
Cross-wire section - solid/ stranded with ferrule (mm^{2}):
Dimensions:
Weight:
Standards:

PRI-34

- It is used to monitor the value of alternating current, e.g.: motors, heating cables, lamps and other devices.
- Power supply and monitoring circuits are not galvanically isolated.
- Monitors current exceeding the upper current level (Imax) and falling below the lower current level (Imin) - according to the selected function.
- Smooth adjustment of both current levels.
- Adjustable time delay (to eliminate short-term current drops and spikes).
- Option to select functions with fault state memory (Latch).
- Measures true root mean square value of the current - TRUE RMS.
- Possibility to extend the current range using an external current transformer.

Description

		Supply voltage terminals (A1-A2)
Monitored current terminals (A1-B1)		Indication of operating states
Supply voltage indication		
	PRI-34/2A Un	
Function settings	2	Upper level setting (Imax)
Lower level setting (Imin)	23-m	
		Time delay setting
	1	
	(2) [2) ${ }^{15}$	
	4516	Output contact (15-16-18)

Connection

Indication of operating states

Function

OL OVER + Latch

OVER:

- If the value of the monitored current is lower than the set upper level "Imax", the output contact is closed. If the "Imax" is exceeded, the output contact will open after the set delay (fault state).
- If the current falls below the fixed hysteresis (function O1) or the set lower level "Imin" (function O2), the output contact will closes again.
- If the OL function (OVER + Latch) is selected, when the upper current level "Imax" is exceeded, the output contact remains open even when the current returns from the fault state.

Fault memory reset can be done in two ways:

- Short-term interruption of supply voltage.
- By setting the function switch to position R (RESET) or any function without memory fault.
The RESET state lasts for 3 s after switching the function switch from the R position to a function with memory fault (UL, OL, WL).
When moving to any other function from the R position, this delay does not apply.

U1) UNDER (hysteresis 5\%)

U2 UNDER (hysteresis to Imax)

(UL) UNDER + Latch

UNDER:

If the value of the monitored current is higher than the set lower level "Imin", the output contact is closed. When the current drops below the "Imin", output contact opens after the set delay (fault state).
If the current exceeds the fixed hysteresis (function U1) or the set upper level "Imax" (function U2), the output contact closes again.
If the UL function (UNDER + Latch) is selected, when the current drops below the lower level "Imin", the output contact remains open even when returning from the fault state. Fault memory reset can be done as in the previous case.

$\mathrm{t}=$ time delay to fault state
$\mathrm{d}=$ delay 0.3 s after connection of power supply (Un)

WINDOW:

If the value of the monitored current is lower than upper level "Imax" and at the same time higher than lower level "Imin", the output contact in closed. If the "Imax" is exceeded or drops below the "Imin", output contact opens after the set delay (fault state).
To return from the fault state, a fixed hysteresis is applied.
If the WL function (WINDOW + Latch) is selected, the fault state is again stored in memory and output contact stays open, even when returning from the fault state. Fault memory reset can be done as in the previous cases.

Technical parameters

PRI-51

Supply circuit	
Supply terminals:	A1-A2
Voltage range:	AC 24-240 V and DC 24 V ($\mathrm{AC} 50-60 \mathrm{~Hz}$)
Burden:	max. 25 VA/1.6 W
Max. dissipated power (Un + terminals):	2.5 W
Supply voltage tolerance:	-15\%; +10\%
Measuring circuit	
Load:	between B1-B2
Current range:	PRI-51/0.5 A: AC $0.05-0.5$ A PRI-51/8 A: AC $0.8-8$ A PRI-51/1 A: AC $0.1-1$ A PRI-51/0.1-10 A: AC $0.1-10 \mathrm{~A}$ PRI-51/2 A: AC $0.2-2$ A PRI-51/16 A: AC 1.6-16A PRI-51/5 A*:AC $0.5-5$ A (AC $50-60 \mathrm{~Hz}$)
Max. permanent current:	$\begin{gathered} \text { PRI-51/0.5 A: } 2 \mathrm{~A} \\ \text { PRI-51/1 A: } 4 \mathrm{~A} \\ \text { PRI-51/2 A: } 8 \mathrm{~A} \\ \text { PRI-51/0.1-10 A: } 10 \mathrm{~A} \\ \text { PRI-51/5 A, PRI-51/8 A, PRI-51/16 A: } 17 \mathrm{~A} \end{gathered}$
Inrush overload <1ms:	50 A
Current adjustment:	potentiometer
Time delay:	adjustable 0.5-10 s

Accuracy

Setting accuracy (mechanical):	5 \%	
Repeat accuracy:	< 1 \%	
Temperature dependancy:	$<0.1 \% /{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
Limit values tolerance:	5% (10 \% for 0.05-0.5 A and 0.1-10 A range)	
Hysteresis (fault to OK):	5 \%	
Mechanical life:	60.000 .000 op.	
Electrical life (AC1):	150.000 op.	
Output		
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)	
Current rating:	8 A/AC1; 1/3 HP\|240 Vac, 1/4 HP	120 Vac; PD. B300
Breaking capacity:	2000 VA/AC1, 240 W/DC	
Output indication:	red LED	
Other information		
Operating temperature:	$-20 . .55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30 . .70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$	
Dielectrical strength:	4 kV (supply - output)	
Operating position:	any	
Mounting:	DIN rail EN 60715	
Protection degree:	IP40 from front panel/IP10 terminals	
Overvoltage cathegory:	III.	
Pollution degree:	2	
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or 1×4, with sleeve max. 1×2.5 or 2×1.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ ($\left.3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime}\right)$	
Weight:	72 g (2.5 oz.)	
Standards:	EN 60255-1, EN 60255-26, EN 60255-27	

* applicable also for current transformer
- It serves for monitoring of heating in rail-switches, heating cables, consumption of 1-phase motors, indicates current flow.
- Flexible adjustment by potentiometer.
- Adjustable delay 0.5-10 s to eliminate short current peaks.
- It is possible to use for current scanning from current transformer.
- Supply is galvanically separated from measured current, it must be in the same phase.

Monitoring relay PRI-51 serves to monitor current level in one-phase AC circuits. Gradual setting of actuating current of monitoring relay enables many different applications. Output relay is in normal state opened. After the set current level is reached, relay closes after the set delay (0.5-10 s). When returning from faulty to normal state there is a hystersis (5 \%). Multivoltage of this relay is an advantage. It is possible to monitor load which doesn't have the same supply as monitoring relay PRI-51.
Range of PRI-51 can be increased by an external current transformer.

Connection

Example

Connection: PRI-51 with current transformer for current range increase.

Symbol

Example of an order

Always specify all reference name of current relay according to required range, for example PRI-51/5.

EAN code
SHT-13: 8595188189071
SHT-13/2: 859518818485

Technical parameters

SHT-13
SHT-13/2
Supply terminals:
Supply voltage:
Consumption (max.):
Supply voltage tolerance:

Time circuit

Accuracy:	max. $\pm 0.5 \mathrm{~s} /$ day at $23^{\circ} \mathrm{C}\left(73.4{ }^{\circ} \mathrm{F}\right)$
Min. switching interval:	1 s
Data retention time:	min. 10 years
Set time backup:	up to 120 days (CR 2032-3V)
Program circuit	
Number of memory locations:	200
Program type:	daily, weekly, yearly, astro
Displayed data:	LCD display with white backlight
Settings via website:	by Wi-Fi (2.4 GHz)
Other information	
Operating temperature:	$-20 . .+55^{\circ} \mathrm{C}\left(-4 . .131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30 . .+70^{\circ} \mathrm{C}\left(-22 . .158^{\circ} \mathrm{F}\right)$
Dielectric strength: supply - output output 1 -output 2	AC 4 kV AC 4 kV
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP40 front panel / IP20 terminals
Overvoltage category:	III.
Pollution degree:	2
Cross-wire section - solid/ stranded with ferrule $\left(\mathrm{mm}^{2}\right)$:	max. $1 \times 2.5,2 \times 1.5 /$ max. 1×2.5 (AWG 14)
Dimensions:	$90 \times 35 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 1.4^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weight:	$122 \mathrm{~g}(4.3 \mathrm{oz}) \quad 135 \mathrm{~g}(4.8 \mathrm{oz})$
Standards:	EN 61812-1

- All programs in one device (daily, weekly, yearly and astronomical).
- UNIversal supply voltage in range of AC/DC $24-240 \mathrm{~V}$ (AC 50-60 Hz).
- Simple setting after the first start-up.
- User replaceable battery to back up the set time.
- Built-in web server for setup and control via Wi-Fi connection.
- Time synchronization through NTP server (require internet connection).
- New well-arranged display with white backlight.
- ASTROnomic program: manual entry of coordinates or selecting one of the preset cities.
- One/two channel design (each with an operating hours counter).
- Pulse/cycle output mode.
- Transition of summer/winter time - AUTO or OFF.
- Sealable transparent front panel cover.
- PIN code protection against unauthorized changes.
- Wireless firmware update.

Description

SHT-13/2

Description of displayed elements

Connection

Explore out best-selling non-UL products, including high-quality relays and other essential components.

Trusted by professionals across the U.S. market and providing reliable performance and exceptional value for various applications.

CRM-91HE

(10 functions)
Multifunction Timer Relay with External Potentiometer

CRM-2HE

(2 functions)
Asymmetric Flasher with External Potentiometers

CRM-9S

(10 functions)
Multifunction
Timer Relay

HRN-100
(4-wire connection)
Multifunction Voltage Monitoring Relay in 3P with LCD Display

- Control by external control unit - potentiometer (can be placed/mounted for example on switch board doors or in panel).

- Control by external control unit - potentiometer (can be placed/mounted for example on switch board doors or in panel).

Multifunction time relay for universal use in automation, control, and regulation or in-house installations.

- Multifunction and in many ways universal monitoring relay which protects devices and equipment connected to a 3-phase network.

HRH-5

(2 functions)
Asymmetric Flasher with External Potentiometers

MR-41
MR-42
Memory Relays

TER-7

(10 functions)
Temperature Monitoring Thermostat

TER-9

(10 functions)
Digital Thermostat

SJR-2
(10 functions)
ON DELAY Time Relay

- Control by external control unit - potentiometer (can be placed/ mounted for example on switch board doors or in panel).
- Relays MR-41, MR-42 memorize its last state even after supply failure. During the failure relay will turn off and after re-energizing will automatically turns on.
- It monitors motor coil temperature.
- Fixed levels of switching.

- For gradual switching of high power, prevents
current strokes in the main.
- Digital thermostat with 6 functions and built-in time switch clock with day, week and year program. You can also limit temperature functions and courses this way in real time.
current strokes in the main.

Described Funciton
Undervoltage Monitoring

HRNS-81

3P AC Undervoltage and
Phase Monitoring Relay
Described Funciton
Phase Failure Monitoring

HRN-36

(replaces HRN-34, -64)
1P DC Multifunction
Voltage Monitoring Relay
Described Function
Overvoltage + Latch

HRN-39

(replaces HRN-37, -67)
1P AC/DC Multifunction Voltage Monitoring Relay

Manufacturing

CNC Machining Center

- Prevents CNC machine control unit damage by monitoring for states above the voltage limit.
- Maintains operational precision, reduces downtime, and repair costs by ensuring voltage is within safe limits for the equipment

Data Centers

Dual Power Supply Units for Servers

- Prevents CNC machine control unit damage by monitoring for states above the voltage limit.
- Maintains operational precision, reduces downtime, and repair costs by ensuring voltage is within safe limits for the equipment

Public Transportation

Ticket Vending Machines

- Prevents vending machine failure by monitoring for states above the voltage limit
- Maintains service reliability, reduces downtime, and repair costs by ensuring voltage is within operational safety limits

Healthcare

Medical Laboratory Refrigerators

- Prevents damage to sensitive samples by monitoring for states below the voltage limit.
- Ensures critical temperature contorl is maintained, reduces risk of sample spoilage, and supports compliance with healthcare standards.

Utilities

Electrical Substation Transformer

- Detects phase failure in transformers to prevent damage and maintain power distribution efficiency.
- Ensures consistent electrical supply, reducing the risk of power outages and associated costs by maintaining grid reliability

SHT-13/SHT-13/2
Multifunction Digital Time Switch With Wi-Fi Connection

Described Function
Smart Control and Monitoring

HRN3-70
3P AC Overvoltage and Phase Monitoring Relay

Described Function
Overcurrent with Hysteresis

PMR1-31
1P AC/DC Multifunction Voltage Monitoring Relay

Described Function
Window + Latch

PMR1-36/2

1P DC Multifunction Voltage Monitoring Relay

Described Function
Dual Window Monitoring

Conference Rooms

Automated Light Adjustment

- Adjusts lighting based on schedule meetings and ambient light, ensuring optimal lighting conditions.
- Wi-Fi connectivity allows for remote adjustments and monitoring, providing flexibility and ease of use.

Renewable Energy

Solar Panel Inverters

- Prevents inverter damage by monitoring for current outside operational ranges.
- Maintains system efficiency, reduces downtime, and repair costs by ensuring current is within safe limits for the equipment.

Construction

Electric Floor Heating

- Prevents floor heating system overload by monitoring for current beyond safe limits.
- Enhances safety and efficiency, using hysteresis to minimize unnecessary switching, maintaining a consistent and optimal heating environment.

Industrial Automation

Automated Assembly Line Equipment

- Monitors voltage levels to ensure automated equipment operates within safe electrical conditions.
- The latch function locks the system in a safe state, requiring a manual restart, preventing damage due to persistent unstable conditions.

Water Treatment

Pump Control Systems in Water Distribution

- Ensures pumps operate within precise voltage windows, critical for water flow consistency.
- Dual circuits allow monitoring of two systems, improving reliability and efficiency in water distribution.

CRM-161

(10 functions)
Multifunction
Time Relay
Described Function On Delay

CRM-183J ZR

Singlefunction
Time Relay
On Delay

CRM-2H

Singlefunction
Time Relay
Asymmetric Cycler

CRM-82TO

(2 functions)
Multifunction
Time Relay
Described Function
Off Delay Without
Supply Voltage

CRM-91H
(10 functions)
Multifunction
Time Relay
Described Function
Impulse Generator

Automotive Industry

 Assembly line- Coordination of timing between individual production line stations:
- When one station completes its part of the work (e.g., engine assembly), the timing relay triggers the next station (e.g., body assembly) after a set delay.

Water Treatment and Waste Management

 Pumps in a water treatment plant- Delayed activation of individual pumps:
- When starting multiple pumps (e.g., during the transfer of waste to the biological treatment tanks), the relay ensures that the pumps are activated one after another, with a defined delay

HVAC Industry

Building ventilation system

- Warehouse cyclic ventilation:
- In rooms that need to be regularly ventilated (e.g., a storage room), the relay can be programmed to regularly turn the ventilation system on and off, allowing for effective and precise control of ventilation cycles.

Security Industry

Emergency lighting

- Delayed shutdown of emergency lighting after the main power source is restored:
- It allows the emergency lighting to be powered by a backup source for up to 10 minutes after the main power source is restored, avoiding a complete blackout in case of a repeated power outage.

CRM-93H

(10 functions)
Multifunction
Time Relay
Described Function Memory (Impulse) Relay

HRN-56

Voltage
Monitoring Relay

PR1-51

Current
Monitoring Relay

vs308U

Power Relay

VST16U
Power Relay

Elevator Manufacturing

Passenger elevator

- Floor buttons and consequent elevator movement:
- After pressing a floor button, the relay activates the corresponding circuit and keeps it active even after the impulse ended, keeping the elevator in motion, until a second pulse is received, this time to stop the elevator

Food Industry

Motor in an industrial mixer

- Stopping the motor in case of a phase failure:
- In case of a phase failure, the relay stops the mixer motor to prevent any damage that may occur due to its improper rotation.

Electronics Manufacturing

Assembly line

- Overcurrent monitoring in component motors:
- In case of overcurrent in the motor of an assembly line component, the relay will turn off this motor to prevent it from overloading or jamming.

Agriculture, Forestry, Farming - Dryers, Grain Processing Machines

Time Relays

- Starting equipment in sequence (inrush current prevention)

Auxiliary Relays

- Electrically separating circuits

Monitoring / Protection Relays

- Detecting and preventing overload

Buildings, Complexes, Stadiums, Amusement Parks - Gate \& Garage Door Panels

Time Relays

- Delayed start / extended operation

Auxiliary Relays

- Switching single phase load

Monitoring / Protection Relays

- Indicating current flow

Car Washing Stations - Compressors
Time Relays

- Cyclic control

Auxiliary Relays

- Utilizing a range of AC/DC supply voltages

Monitoring / Protection Relays

- Safe stop / off in case power loss

Cement / Concrete Plants - Grinder / Crusher Motor Auxiliary Heaters / Cooling Fans

Time Relays

- Starting and stopping loads at a specific time of day

Auxiliary Relays

- Electrically separating circuits

Monitoring / Protection Relays

- Indicating overcurrent / overvoltage

EV Charging (Station Manufacturing \& Servicing) Fast Charging Station Auxiliary Circuits

Time Relays

- Timing signal lamps, horns

Auxiliary Relays

- Switching single phase load

Monitoring / Protection Relays

- Preventing damage in case of overcurrent / overvoltage

Food \& Beverage (Production \& Processing) -
Conveyor Systems, Automated Lines, Injectors, Fillers
Time Relays

- Cyclic light \& heat control

Auxiliary Relays

- Utilizing a range of $A C / D C$ supply voltages

Monitoring / Protection Relays

- Controlling switching between power sources

Heavy Industry, Metals - High Power Motor Auxiliary Heaters / Cooling Fans

Time Relays

- Starting equipment in sequence (inrush current prevention)

Auxiliary Relays

- Electrically separating circuits

Monitoring / Protection Relays

- Detecting and preventing overload

Lighting - High Power Street Lamps

Time Relays

- Delayed start / extended operation

Auxiliary Relays

- Switching single phase load

Monitoring / Protection Relays

- Indicating current flow

Mining Sites - Kiln Auxiliary Drives \& Heaters

Time Relays

- Cyclic control

Auxiliary Relays

- Electrically separating circuits

Monitoring / Protection Relays

- Safe stop / off in case power loss

Oil \& gas - Pump Motor Auxiliary Heaters

Time Relays

- Starting and stopping loads at a specific time of day

Auxiliary Relays

- Switching single phase load

Monitoring / Protection Relays

- Indicating overcurrent / overvoltage

Plastic Produce - Single Phase DOL Starters

Time Relays

- Cyclic control

Auxiliary Relays

- Utilizing a range of AC/DC supply voltages

Monitoring / Protection Relays
Preventing damage in case of overcurrent / overvolatge

Pulp \& paper - DC Drive Field Circuits

Time Relays

- Delayed start / extended operation

Auxiliary Relays

- Electrically separating circuits

Monitoring / Protection Relays

- Controlling switching between power sources

Pump stations \& Water Treatment Plants - Single Phase Motors \& Actuators

Time Relays

- Starting and stopping loads at a specific time of day

Auxiliary Relays

- Switching single phase load

Monitoring / Protection Relays

- Preventing damage in case of overcurrent / overvolatge

Renewable Energy (Solar, Wind) - Battery Storage Units

Time Relays

- Timing signal lamps, horns

Auxiliary Relays

- Utilizing a range of AC/DC supply voltages

Monitoring / Protection Relays

- Indicating current flow

Warehouse \& Other Logistics Operations - Automated Shelving Systems

Time Relays

- Cyclic light \& heat control

Auxiliary Relays

- Electrically separating circuits

Monitoring / Protection Relays

- Safe stop / off in case power loss

Product loadability

Problematic choice of suitable relay contact for a particular load switched with a product is described below. Mostly we experience problems with incorrect choice of load (meaning incorrect relay for a particular load) which results in permanent switching of contact (sealing) or damage on relay contact - which then results in malfunction.
What load can you use? Detailed types of load according to standard EN 60947 are described in charts below - categories of use.

| Category of use | Typical use | EN |
| :---: | :---: | :---: | :---: |

AC current, $\cos \varphi=P / S(-)$

AC-1	Non-inductive or slightly inductive load, resistance furnace Includes all appliances supplied by AC current with power factor $(\cos \varphi) \geq 0.95$ Examples of usage: resistance furnace, industrial loads	60947-4
AC-2	Motors with slip-ring armature, switching off	60947
AC-3	Motors with short-circuit armature, motor switching when in operation This category applies to switching off motors with short-circuit armature while in operation. While switching, contactor switches current which is 5 up to 7 times rated current of motor.	60947-4
AC-4	Electro-motors with short-circuit armature: start up, braking by backset, changeover	60947
AC-5a	Switching of electrical gas-filled lights, fluorescent lights	60947-4
AC-5b	El. bulb switching Enables low contact loading due to resistance of cold fiber is many times smaller that the one of hot fiber.	60947-4
AC-6a	Switching of transformers	60947-4
AC-6b	Switching of capacitors	60947-4
AC-7a	Switching low inductive loads of home appliances and similar applications	60947
AC-7b	Load of motors for home appliances	60947
AC-8a	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-8b	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-12	Switching of semiconductor loads with separation transformers	60947-5
AC-13	Switching of semiconductor loads with separation transformers	60947-5-1
AC-14	Switching of low electro-magnetic loads (max. 72 VA)	60947-5-1
AC-15	Management of alternating electro-magnetic loads This category applies to switching inductive loads with input for closed electro-magnetic circuit higher than 72 VA Use: switching coils of contactors	60947-5
AC-20	Connecting and disconnecting in unloaded states	60947-3
AC-21	Switching resistive loads, including low loading	60947-3
AC-22	Switching of mixed resistive and inductive loads, including low overloading	60947-3
AC-23	Switching of motor loads or other high inductive loads	60947-3
AC-53a	Switching of motors with short-circuit armature with semiconductor contactors	60947

$D C$ current, $t=L / R(s)$

DC-1	Non-inductive or low inductive load, resistive furnaces	$60947-4$
DC-3	Shunt motors: start-up, braking by backset, reversion, resistive braking	$60947-4-1$
DC-5	Series motor: start-up, braking by backset, reversion, resistive braking	$60947-4-1$
DC-6	Non-inductive or low inductive loads, resistive furnaces - el. bulbs	$60947-4-1$
DC-12	Management of resistive loads and fixed loads with insulation by opto-electric element	$60947-5-1$
DC-13	Switching of electromagnets	$60947-5-1$
DC-14	Switching of electromagnetic loads in circuits with limiting resistor	$60947-5-1$
DC-20a(b)	Switching and breaking without load(a: frequent switching ,b: occasional switching)	$60947-3$
DC-21a(b)	Switching ohmic loads including limiting overloading (a: frequent switching ,b: occasional switching)	$60947-3$
DC-22a(b)	Switching of compound ohmic and inductive loads including limited overloads (e.g. shunt motors) (a: frequent switching, b: random switching)	$60947-3$
DC-23	Switching of highly inductive loads (e.g. series motors)	$60947-3$

How can you distinguish for which load is our product (relay) designated?
Our company record this information on a products and also in our catalog, instruction manual and other promotional and technical material (website etc.).
It is important to realize that it is not always possible to point out load because of lack of information about the device (user cannot measure cos) or it is not possible because of inconstancy of parameters of switched device. Manufacturer of relays records always guaranteed parameters in ideal conditions which are done by a norm (temperature, pressure, humidity, etc.) and reality can be in a lot of cases different. Category of use (classification) of a particular relay is done by material of output contacts.
Basic types of materials which are used for production of contacts for high-performance relay are:
a) AgCd - suitable for switching ohmic loads. Before of harmfulness of Cd , this type of contact is remitted.
b) AgNi -designated for switching resistive loads, good quality switching and conducting (contact doesn't oxidate) small currents/voltages, it is not designated for surge currents and loads with inductive component.
c) AgSn or AgSnO_{2}-suitable for switching loads with inductive component, not suitable for switching small currents/voltages, it is more resistive to surge currents, suitable for DC voltage switching, less suitable for switching loads of ohmic type.
d) Wf (wolfram)-special contact designated for switching surge currents with inductive component.
e) with gold ($\mathrm{AgNi} / \mathrm{Au}$)- Used for "improving" contacts for low currents/ voltages, prevents oxidation.

CRM-2H; CRM-2T; CRM-181J; CRM-91H; CRM-111H; CRM-183J / CRM-93H / CRM-113H (1. kontakt); CRM-121H; CRM-131H; HRN-31; HRN-31/2; HRN-32/2; HRN-36; HRN-39; HRN3-70; HRN3-80; HRN3-81; PMR1-31; PMR1-31/2; PMR1-36; PMR1-36/2; PMR1-39; PMR1-39/2; PMR3-70; PRI-34; PTRM-216K; PTRM-216T; PTRM-216KP; PTRM-216TP; PTRA-216K; PTRA-216T;

\cdots	type of load	$\begin{gathered} \cos \varphi \geq 0.95 \\ A C 1 \end{gathered}$							m AC7b	AC12
$\frac{0}{0}$	Material of contact AgNi, 16A	250V/16A	250V/5A	250V/3A	230V/3A (690VA)	x	800W	x	250V/3A	250V/10A
	type of load		\bar{m}	 AC15	$\square-$			-	\cdots	\bar{m} DC14
	Material of contact AgNi, 16A	250V/6A	250V/6A	250V/6A	$\begin{gathered} \mathrm{DC1} \\ 24 \mathrm{~V} / 16 \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{DC} 3 \\ 24 \mathrm{~V} / 6 \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{DC5} \\ 24 \mathrm{~V} / 4 \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{DC12} \\ 24 \mathrm{~V} / 16 \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{DC13} \\ 24 \mathrm{~V} / 2 \mathrm{~A} \end{gathered}$	24V/2A

VS116U

type of load	$\widetilde{\square}$ AC1					$\xrightarrow[\text { AC5b }]{(M)}$	$\underset{A C 6 a}{3 \mid \xi}$	m AC7b	
Material of contact $\mathrm{AgSnO}_{2}, 16 \mathrm{~A}$	250V/16A	250V/5A	250V/3A	230V/3A (690VA)	230V/3A (690VA) till max output $\mathrm{C}=14 \mathrm{UF}$	1000W	x	250V/3A	\times
type of load		\bar{m} AC14			$-$			\bar{m} DC13	\bar{m} DC14
Material of contact $\mathrm{AgSnO}_{2}, 16 \mathrm{~A}$	x	250V/6A	250V/6A	24V/16A	24V/3A	24V/2A	24V/16A	24V/2A	x

CRM-82TO; CRM-183J / CRM-93H / CRM-113H (2. + 3. kontakt); VS308U; CRM-161; HRN-56; PRI-32; PRI-51;

VS425

type of load	AC-1, AC-7a, AC-21	AC-2	AC-3, AC-3e, AC-7b, AC23	$\begin{aligned} & \text { AC-5a } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{AC}-5 \mathrm{~b} \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { AC-6a } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { AC-15 } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{DC}-1 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{DC}-3 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} D C-5 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{DC}-13 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	LED	$\begin{gathered} \text { AC-6b, AC-7c } \\ (230 \mathrm{~V}) \end{gathered}$
rated current	25A	14A	8,5A	11,2A	8,8A	2,8A	6A	25A, 20A	15A, 8A	15A, 5A	6A	3,8A per contact	switching capacity 36 uF

VS440

type of load	$\begin{aligned} & \mathrm{AC}-1, \\ & \mathrm{AC}-7 \mathrm{a}, \\ & \mathrm{AC}-21 \end{aligned}$	AC-2	AC-3, AC-3e, AC-7b, AC23	$\begin{aligned} & \text { AC-5a } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { AC-5b } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { AC-6a } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{AC}-15 \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{DC}-1 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{DC}-3 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{DC}-5 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{DC}-13 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	LED	$\begin{gathered} \mathrm{AC}-6 \mathrm{~b}, \mathrm{AC}-7 \mathrm{c} \\ (230 \mathrm{~V}) \end{gathered}$
rated current	40A	25A	22A	20A	17,6A	10,8A	6A	40A, 25A	22A, 10A	20A, 8A	6A, 4A	11A per contact	switching capacity 220 uF

VS463

type of load	AC-1, AC-7a, AC-21	AC-2	AC-3, AC-3e, AC-7b, AC23	$\begin{aligned} & \text { AC-5a } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { AC-5b } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { AC-6a } \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{AC}-15 \\ & (230 \mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{DC}-1 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{DC}-3 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} D C-5 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{DC}-13 \\ (24 \mathrm{~V}, 48 \mathrm{~V}) \end{gathered}$	LED	$\begin{gathered} \text { AC-6b, AC-7c } \\ (230 \mathrm{~V}) \end{gathered}$
rated current	63A	32A	30A	32A	22A	17,2A	6A	63A, 26A	25A, 11A	25A, 10A	6A, 4A	18A per contact	switching capacity 330 uF

Packing of 1-MODULE relay - 1 pc

Packing of 1-MODULE relay - 10 pcs

Packing of 1-MODULE relay with accessories

Packing of 2-MODULE relay - 1 pc

Packing of 3-MODULE relay - 1 pc

3-MODULE

2-MODULE

6-MODULE

PMR3-70

front panels PLUG-IN, examples of use:
PTRx-216T

PTRx-216K
PMR1-3x

VS120
VS425
VS440
VS463

PS1M-15/12V PS1M-15/24V

PS2M-24/12V PS2M-30/24V

PS3M-54/12V PS3M-60/24V

PS4M-85/12V
PS4M-92/24V

Multifunction time relay CRM-91H, CRM-93H

- for electric appliances, where is necessary to change the exact timing - controlling of the illumination, heating, motors, machines, ventilators, contactors

Time relay PLUG-IN type PTRM-216TP

- serves to control light signallization, heating, motor and fan control etc.

Asymmetric flasher CRM-2H

- regular rooms ventilation, cyclic humidity exhaustion, illumination controlling, circulation pump, flash, warning appliances, regular pump down, regular irrigation via electromagnetic valve

Delay OFF without supply voltage CRM-82TO

- delayed back-up switch off at current failure (emergency illumination, emergency respirator)

Singlefunction time relay CRM-181J

- time switch, using for run down the pump after switch off the heating, switching of ventilators

Modular contactor VS120, VS220, VS425

- to switch circuits for supply and control heating, lights, air-conditioning and other el. devices.
Switches loads AC-1, AC-3, AC-7a, AC-7b, AC-15.

Voltage monitoring relay HRN-32/2

- start of back-up supply in case of failure

Monitoring voltage relay HRN-31 (HRN-31/2)

- monitoring of mains voltage for appliances inclinable to supply tolerance

Monitoring voltage relay HRN-31 (HRN-31/2)

- protection of appliances against under-/overvoltage

Monitoring voltage relay HRN-36

- load disconnected when voltage declines or battery is discharged

Modular contactors VS440, VS463

- to switch supply and control circuits for heating, air-conditioning and other el. devices, switching 3-phase motors
Switches loads A-1, AC-3, AC-7a, AC-7b, and AC-15

Power relays VS

- switching of higher load than is capacity of switched unit = repeater - assistant light controlling, signalling, boilers, ...

Monitoring current relay PRI-51, PRI-32

- current-limiting relay (on one branch two appliances, which never work together), controlling systems, motors, heating, current indication, controlling of 1-phase motor run down, during the installation of main housing switchboard could be controlled via eye, if the cooker is not switched
- in connection with current transformers, it is possible to extend current ranges up to 600 A , which makes more things possible

More Than Just Resellers

We innovate, develop and manufacture out products in-house

Finalization and dispatch

Jan Pacovsky
Managing member, CEO
Cell: +1(608)746-1332
Email: pacovsky@elkoep.na
www.elkoepna.com

Headquarters | 1150 NW $72^{\text {nd }}$ Ave, Tower I, Suite 455 \#9226 | Miami, FL 33126 |
phone: +1(608)746-1332 | pacovsky@elkoepna.com | www.elkoepna.com
Office | 100 S State St. Chicago, IL 60603
Central Warehouse | 7200 Intermodal Dr, Louisville, KY 40258

[^0]: * for adjustable delay $<100 \mathrm{~ms}$, a time deviation of $\pm 10 \mathrm{~ms}$ applies

[^1]: * for adjustable delay $<100 \mathrm{~ms}$, a time deviation of $\pm 10 \mathrm{~ms}$ applies

[^2]: * for adjustable delay $<100 \mathrm{~ms}$, a time deviation of $\pm 10 \mathrm{~ms}$ applies

[^3]: ＊for adjustable delay $<100 \mathrm{~ms}$ ，a time deviation of $\pm 10 \mathrm{~ms}$ applies

[^4]: VSK-11: 8595188121613

[^5]: * PS6M-135/12V \& PS6M-150/24V on request
 ** different rated voltage on request: PS1M, PS2M, PS3M-5V, 15V, 48V; PS4M, PS6M-15V, 48V
 *** PS6M - max. operating temperature limited to $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$
 **** the stated values are valid for the full load from the source

